
USOO7433858B2

(12) United States Patent (10) Patent No.: US 7.433,858 B2
Rehberg et al. (45) Date of Patent: Oct. 7, 2008

(54) RULE SELECTION ENGINE 6,151,697 A * 1 1/2000 Moeller 714/759
OTHER PUBLICATIONS (75) Inventors: Charles Patrick Rehberg, Nashua, NH

(US); Steve Sherwood Porter, Sterling,
MA (US)

(73) Assignee: Trigent Software Inc., Natick, MA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 161 days.

(21) Appl. No.: 10/765,461

(22) Filed: Jan. 26, 2004

(65) Prior Publication Data

US 2005/O165707 A1 Jul. 28, 2005

(51) Int. Cl.
G06F 7700
G06N 5/00 (2006.01)
G06N 5/02 (2006.01)

(52) U.S. Cl. 706/47; 706/45; 706/50
(58) Field of Classification Search 706/.45,

706/50, 55,47, 61,59; 395/52
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

(2006.01)

4,649,515 A * 3/1987 Thompson et al. 7O6/52
5,140,671 A * 8/1992 Hayes et al. TO6/60
5,179,632 A * 1/1993 Masui et al. 706/47
5,228, 116 A 7, 1993 Harris et al. TO6.50
5,263,127 A 11/1993 Barabash et al.
5,353.385 A 10, 1994 Tano et al.
5,517,642 A * 5/1996 Bezek et al. 707/3
5,642,471 A 6, 1997 Paillet

RULES BASE

RULES COMPLER

125

COMPE
RUSBASE

RULESPROCESSING
ENGINE

International Searching Authority “Notification of Transmittal of
International Search Report', PCT/US05/02396, Jun. 27, 2006.
Doorenbos, “Production Matching for Large Learning Systems”.
Computer Science Department, Carnegie Mellon University, Pitts
burgh, PA, Jan. 31, 1995.
Gordin et al., “Set-Oriented Constructs: From Rete Rule Bases to
Database Systems”.
Hanson et al., “An Overview of Production Rules in Database Sys
tems'. The Knowledge Engineering Review, 8(2): 121-143 (1993).
Nayaket al., "Comparison of the Rete and Treat Production Matchers
for Soar (A Summary)”.
Tambe et al., “Uni-Rete: Specializing the Rete Match Algorithm for
the Unique-attribute Representation', pp. 1-30.
Wallis et al., “Efficient Forward Chaining for Declarative Rules in a
Multi-Agent Modelling Language'. Center for Policy Modelling,
Manchester Metropolitan University, UK. Oct. 21, 1994.
* cited by examiner
Primary Examiner Joseph P Hirl
(74) Attorney, Agent, or Firm—Occhiuti Rohlicek & Tsao
LLP

(57) ABSTRACT

A rules-based system makes use of a specification that is
similar to those used in earlier systems, such as in OPS5, but
does not require the computational complexity of implemen
tations such as Rete. In some such implementations, match
ing of the applicable rules given a set of facts is simplified by
providing preallocated Storage locations for the Boolean val
ues of the condition elements for each rule. The Boolean
values are set by direct processing of each of the facts. These
preallocated storage locations are arranged to allow efficient
evaluation of the overall condition of each of the rules in a
manner that is significantly more efficient than implementa
tions of earlier rule-based systems.

4 Claims, 4 Drawing Sheets

RULES-BASEDSYSTEM

FACTBASE

RESULTS N
104

U.S. Patent Oct. 7, 2008 Sheet 1 of 4 US 7.433,858 B2

as a as a gasps u sum up a FACTS Ro2

1OO

RULES-BASED SYSTEM

RULES BASE

FACT BASE

RULES COMPLER

RULES PROCESSING
ENGINE

COMPLED
RULES BASE

RESULTS N
FIG. 1 104

U.S. Patent Oct. 7, 2008 Sheet 2 of 4 US 7.433,858 B2

16S-------------------- 240 (1 35
- - COMPLED RULES BASE 260 TDYNAMICT

250- A - \ RULESDAA
RULESTABLE SELECTION

TABLE
230

243

RULESPEC 10
232 2 3 SN 2 3 234

CE SPEC

232 ? 236
y yces 1

234 236 al

N

FEATURE TABLE

N

CE TABLE 254 256 | 252 256

f l 2GN
2 5 7

1. 1. 1.

e in RULESPEC

254 1. t s
SS -

s APPLICABLE RULEST

292

FEATURE HASH

RENT 2OO PEC
Fl FACT

222 IDENTIFIER
IDENTIFIE NNT ATTRIBUTE HASH 212

222-A- DENTIFIERI N
ATRIBUTE

224

U.S. Patent Oct. 7, 2008 Sheet 3 of 4 US 7.433,858 B2

COMPLE RULES BASE 310
FORMING COMPLED
RULES BASE AND
NITALZED RULES

DATA

320
PROCESSEXTERNAL
FACTS TO DETERMINE
APPLICABLE RULES

LIST

330

APPLY RULE FROM 340
APPLICABLE RULES

LIST

350

PROCESSADDED
FACT(S) TO ADD

RULESTO APPLICABLE
RULESLIST

360

FIG. 3

U.S. Patent Oct. 7, 2008 Sheet 4 of 4

DENTFY
FEATURE

ENTRIES FOR THE
ADDED FACT

DENTFY
CONDITION

ELEMENTS FOR
THE FEATURES

STORE
CONDITION

EEMENT VALUES
INSELECTION BIT

VECTORS

IDENTFY
APPLICABLE
RULESUSING
SELECTION BIT
VECTORS

UPDATE
APPLICABLE
RULESLIST

FIG. 4

US 7.433,858 B2

US 7,433,858 B2
1.

RULE SELECTION ENGINE

BACKGROUND

This invention relates to rules-based software systems.
One approach to the design of artificial intelligence sys

tems has been to use a rules-based approach. In rules-based
systems, a set of rules (or “productions') defines the behavior
of the system. Rules are selected based on specifications of
the rules and the state of information that is known to the
system about a particular problem. Selected rules are applied.
Application of the rules in general changes the state of infor
mation, thereby potentially allowing further rules to be
selected. Generally, rules-based systems in which informa
tion is repeatedly added to the state of information, thereby
allowing further rules to be applied until a desired result is
achieved or until there are no remaining applicable rules, are
referred to as “forward-chaining rules-based systems.
One well-known rules-based system is the OPS5 system,

which was developed at Carnegie Mellon University in the
early 1980s and later commercialized by a number of com
panies. In OPS5, the state of information is represented as a
set of facts (or “working memory elements.” “WMEs). Facts
belong to identified classes, and each fact (an instance of a
class) assigns values to a number (Zero or more) attributes for
that class. In general, a fact takes the form “(identifier
attribute 1 value1 attribute2 value2 ...)” where “identifier”
is the name of a class, and “attribute1, “attribute2, etc. are
names of attributes for that class. An example of a fact could
be “(person height 6.0 weight 210)” for a person (an
instance of a class named person) whose height is 6.0 feet and
weight is 210 pounds.

Each rule (production) has the form “LHS condition - - -
>RHS action', where the left-hand-side (LHS) condition on
the state of information under which the rule is applicable and
the right-hand-side (RHS) action specifies the operations to
perform when applying the rule. This condition is a Boolean
expression that combines a number of terms with logical
operators. The logical operators are AND and ANDNOT, and
each of the terms is referred to as a condition element. Each
condition element is a logical function of the value or values
of specified attributes for an identifier, for example, the
attribute having a particular value or belonging to a specified
set of values, not having a particular value, not belonging to a
specified set, etc. A condition element is represented as
“(identifier attribute value) if the identifier/attribute must
have the specified value, and as “(identifier
attribute.<<value1 value2 . . . >>) if the identifier/attribute
must belong to the specified set of values. A condition ele
ment can be a logical function or a combination of multiple
attributes. For example Such a combination can be repre
sented as “(person weightd.200 height<6.0) to indicate that
the weight attribute must be greater than 200 and the height
attribute less than 6.0. A condition element is evaluated to be
true for a fact if that fact includes attribute/value pairs that
together determine that the overall logical function is true.
Each condition element of a rule can match a different fact,
and a rule's condition is true if the logical combination of the
condition elements is true for a particular set of facts. Some
systems such as OPS5 allow the values in condition elements
to be variables that must be bound to the same value in each of
the condition elements of a rule's condition that together
match a particular rule.
An action of a rule can include one or more separate

actions, each of which can modify the state of information, for
example, by adding a fact with particular attributes, or by
removing or modifying an existing fact. Execution proceeds

5

10

15

25

30

35

40

45

50

55

60

65

2
in a loop where first one or more applicable rules are identi
fied along with the facts that make them applicable, then one
of these rules is selected, and then the action of that selected
rule is performed.
The task of identifying applicable rules and the facts that

make them applicable can be quite computationally expen
sive. One particular algorithm that is used in many implemen
tations of forward-chaining rules-based systems, such as
OPS5, is the Rete algorithm, originally developed by C. L.
Forgy. The Rete algorithm uses a data flow network to repre
sent the conditions of the rules. The network has two parts,
one part performs the tests required to evaluate the individual
condition elements, and a second part combines the condition
elements to form the overall conditions for the rules. The
outputs of the first part (and the input to the second part) are
a set of memories each associated with a different condition
element for holding the set of facts that satisfy (or may satisfy
for some values of the variables) that condition element. The
second part includes storage elements associated with differ
ent combinations of condition elements, each identifying the
possible corresponding combinations of facts that satisfy that
combination of condition elements. Some of these storage
elements are associated with overall conditions that particular
rule must satisfy, and the presence of any combination of facts
in these storage elements indicate that the corresponding
rules are applicable given those facts.

SUMMARY

In a general aspect, the invention features a rules-based
system that makes use of a specification that is similar to those
used in earlier systems, such as in OPS5, but does not require
the computational complexity of implementations such as
Rete. Some implementations of the invention do not neces
sarily perform the same processing as earlier systems. For
example, they may not require that a rule be repeatedly
applied if the condition is satisfied for multiple different sets
of facts, the action of each rule are independent of the facts
that enabled the rule, and/or variables are not used in the rule
conditions. In some such implementations, matching of the
applicable rules given a set of facts is simplified by providing
preallocated storage locations for the Boolean values of the
condition elements for each rule. The Boolean values are set
by direct processing of each of the facts. These preallocated
storage locations are arranged to allow efficient evaluation of
the overall condition of each of the rules in a manner that is
significantly more efficient than implementations of earlier
rule-based systems such as Rete implementations of OPS5.

In one aspect, in general, the invention features a method,
and a related system and Software for processing rules. A
rules base that includes a set of rules is accepted by the
system. Each rule includes a condition for application of the
rule. The condition for a rule includes one or more condition
element, and at least some of the conditions include multiple
condition elements. The rule base is processed to form a data
structure. The data structure includes, for each of the rules,
storage locations for holding Boolean values of the condition
elements of the conditions for that rule.

Implementations of the invention can include one or more
of the following features.
A set of facts is processed by the system. This processing

includes evaluating condition elements that depend on the
facts, and storing results of evaluating the condition elements
in the storage locations in the data structure for holding the
values of the condition elements.
The data structure links each fact to corresponding condi

tion elements that depend on that fact.

US 7,433,858 B2
3

Processing the facts includes determining applicable rules
based on the accepted facts by identifying condition elements
that depend on the accepted facts using the data structure.

The data structure includes, for each of the rules, data
values corresponding to the storage locations for the values of
the condition elements. These data values represent a logical
combination of condition elements.

Applicable ones of the rules are identified using the data
values representing the logical combination of the condition
elements and values stored in the storage locations for storing
values of the condition elements.

Implementations of the invention can have one or more of
the following advantages.

Representation of the values of condition elements in a
compact data structure. Such as a bit vector, can enable effi
cient evaluation of the conditions for rules making use of the
condition element. Using a corresponding compact data
structure to represent the logical combination for the condi
tion elements can further increase efficiency in the evaluation.

Compiling multiple rule bases into data structures that can
be loaded into memory, for example, using stored memory
images, enables efficient selection and/or Switching of rule
sets for processing different sets of facts.
The storage requirements for the approach do not neces

sarily grow as more facts are processed.
The links in the data structure provide an efficient mecha

nism for identifying applicable rules without requiring
Searching.

Other features and advantages of the invention will be
apparent from the following description, drawings, and
claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a rules-based system.
FIG. 2 is a data structure diagram.
FIG. 3 is a flowchart of overall operation of the system.
FIG. 4 is a flowchart of processing of an added fact.

DESCRIPTION

There are a great many possible implementations of the
invention, too many to describe herein. Some possible imple
mentations that are presently preferred are described below. It
cannot be emphasized too strongly, however, that these are
descriptions of implementations of the invention, and not
descriptions of the invention, which is not limited to the
detailed implementations described in this section but is
described in broader terms in the claims.

Referring to FIG. 1, a rules-based system 100 accepts one
or more external facts 102 and produces results 104 based on
processing of the facts according to a rule base 115. The
accepted facts 102 are maintained in a fact base 110, and rules
base and fact base are processed by a rules processing engine
160. The rules base 115 includes a number of separate rules.
Each of these rules specifies a condition that determines
whether the rule is applicable based on the contents of the fact
base 110. Each rule also specifies actions to take when the rule
is applied. These actions can include modification of the fact
base 110 and providing results 104 from the system 100.

Prior to processing the external facts 102, the rules-based
system 100 processes the rules base 115 using a rules com
piler 120 to produce a compiled rules base 125. The compiled
rules base includes a static data structure representing the
rules in the rules base 115, as well as corresponding dynamic

5

10

15

25

30

35

40

45

50

55

60

65

4
rules data 135 that includes storage locations for working data
that is produced by the rules processing engine when it pro
cesses the external facts 102.
As facts are added to the fact base, or as the fact base is

modified based on the application of rules, rules may become
applicable, and previously applicable rules may cease to be
applicable. The rules processing engine 160 identifies appli
cable rules and performs the specified actions of those rules.
To the extent that external facts 102 do not continue to be
added to the system, the process in general terminates when
all the applicable rules have been applied.

Each fact 102 is represented by an identifier and one or
more attribute-value pairs, which are denoted “(identifier
attribute 1 value1 attribute2 value2 . . .) using a notation
that is related to that used in the OPS5 system. The combina
tion of an identifier and an attribute is referred to as a “fea
ture.

Each rule in the rule base 115 is specified in a manner that
is similar to that used in the OPS5 system, and includes a
specification of a condition under which the rule is applicable.
This condition is a Boolean expression that combines a num
ber of terms with logical operators. The logical operators are
AND and ANDNOT, and each of the terms is referred to as a
condition element. Each condition element is a logical func
tion (i.e., a function producing a Boolean value of TRUE or
FALSE) of the value or values of specified attributes for an
identifier, for example, the attribute having a particular value
or belonging to a specified set of values, not having a particu
lar value, not belonging to a specified set, etc. A condition
element is represented as “(identifier attribute value) if the
identifier/attribute must have the specified value, and as
“(identifier attribute <<value1 value2 ... >>)” if the identi
fier/attribute must belong to the specified set of values. A
condition element can be a logical function or a combination
of multiple attributes. For example such a combination can be
represented as “(person weight-200 height<6.0) to indi
cate that the weight attribute must be greater than 200 and the
height attribute less than 6.0. A condition element is evaluated
to be true for a fact if that fact includes attribute/value pairs
that together determine that the overall logical function is
true. Note that if an attribute that is not present in a fact its
value is implicitly NIL.
The number of rules in the rule base 115 may be quite large,

for example several hundred thousand in number. As intro
duced above, the rules processing engine 160 makes use of
data structures in the compiled rules base 125 and the
dynamic rules data 135 and procedures that access these data
structures. These data structures enable efficiently searching
for applicable rules.

Referring to FIG. 2, the rules processing engine 160 uses
the compiled rules base 125 and the dynamic rules data 135 to
determine which rules are applicable given a particular fact. A
rules table 250 includes one entry (row) 252 for each rule in
the rules base 115. A condition element (CE) table 230
includes one entry for each condition element that is used in
a condition of Some rule. Note that in general the same con
dition element can be used in multiple rules, and a common
condition element can be combined with an AND in one
rule's condition and with an ANDNOT in another rule's con
dition. A feature table 220 includes one entry 222 for each
unique attribute/identifier pair upon whose value at least
some condition elements depend. A feature hash table 210
maps a hash of an identifier/attribute pair to an entry 222 (if
any) in the feature table 220 for that identifier/attribute pair.
Finally, a selection table 240 includes one entry 242 corre
sponding to each of the entries in the rules table 250. Note that
as described below, given a particular rule base 115, the rules

US 7,433,858 B2
5

table 250, the CE table 230, and the feature table 220 do not
necessarily depend on the contents of the fact base 110, while
the selection table 240 depends on the contents of the fact
base 110 according to the processing performed by the rules
processing engine 160 based on the rule base.
The data structure links features to condition elements that

depend on values of these features using pointers that link the
tables shown in FIG.2. Each entry 122 of the feature table 120
includes a pointer 126 to the condition element entries 132 in
the condition element table 130 for each condition element
that depends on the value of the identifier/attribute value.
Each condition element entry 132 of the condition element
table 130 includes pointers 136 to storage locations 243 in the
selection table 140 each of which is associated with a particu
lar use of that condition element in a particular rule.
The data structure includes bit vectors that are used to

determine ifa rule's condition is satisfied. Each rule entry 252
of the rules table 250 includes a bit vector 156 that includes
one bit for each of the condition elements in the condition for
that rule. That is, if there are four condition elements that
make up the condition for the rule, there are four bits in the bit
vector 256. Each bit 242 of the bit vector indicates whether
the condition element associated with that bit position is
combined with an AND or and ANDNOT operation, with a 1
signifying AND and a 0 signifying ANDNOT. Each entry of
the selection table 240 also includes a bit vector where each
bit position 243 corresponds to a bit position in the bit vector
256 for the corresponding rule entry 152. That is, the first bit
243 of the bit vector 242 corresponds to the first bit 257 of the
bit vector 256. The bits of the selection table provide storage
locations that are set by the rules processing engine 160 with
a 0 initial value and 1 indicating that the condition element
evaluates to TRUE based on a fact 102 received by the system.
The rules processing engine determines which rules are appli
cable by combining the bit vector 256 in the rule entry 252
with the corresponding bit vector in the entry 242 of the
selection table 240. Specifically, the rules processing engine
determines whether the bits are all equal in the bit vector 256
of a rule entry 252 to the bits in the selection bit vector 242 of
the corresponding entry of the selection table 240.

Referring to FIG. 3, prior to processing the external facts
102 that are presented to the system, the system processes the
rules base 115 with the rules compiler 120 to produce the data
structures for the rules table 250, the CE table 230, the feature
table 220, and the feature hash table 210, and the associated
pointers that link the tables, as well as the empty (i.e., initial
ized to 0) storage bit vectors 242 of the selection table 240
(step 310). These data structures can be stored for later use in
processing new streams of facts. That is, the compilation of
the rule base 115 can be performed significantly earlier than
processing of the facts 102, and compilation of different rule
sets can allow selection of the particular rule set to apply for
each of a series of different sets of facts 102.

Processing of a set of external facts 102 proceeds as follows
(steps 330-360). Initially, an applicable rule list 290 is set to
be empty. For each fact 102, that fact is added to the fact base
110, and the fact being processed by the rules processing
engine 160 is stored in a storage element for the current fact
200. The engine determines whether to add or remove rules
from the applicable rule list 290 according to the effect of the
attribute values in the current fact.

Referring to FIG. 4, for each identifier/attribute repre
sented in that fact, the engine determines if there is a corre
sponding entry 222 in the feature table 220 using the feature
hash table 210 (step 410). If there is such a feature entry 222,
the condition element entries 232 that depend on the value of
the identifier/attribute are identified using the pointers 226

10

15

25

30

35

40

45

50

55

60

65

6
from the feature table 220 to the CEtable 230 (step 420). This
is repeated to identify all the condition elements that depend
on some identifier/attribute of the current fact200. For each of
the condition elements that depends on the current fact, the
condition element is evaluated using the condition element
specification 234 and the attribute values of the current fact
200. Note that the condition element may depend on multiple
ones of the attributes of the current fact. The result of evalu
ating the condition element is then entered in the correspond
ing bit locations of the selection table 240 that are determined
by the pointers 236 linking the CE table with the selection
table (step 430). Each time a bit is updated in one of the bit
vectors 242 of the selection table 240 the bit vector is com
pared with the bit vector 256 of the corresponding rule entry
252 (step 440). If the bit vectors are equal, then an entry 292
is added to the applicable rule list 290, unless an entry for that
rule is already in the list (step 450). If the bit vectors are not
equal, then if the applicable rule list includes an entry for that
rule, it is removed from the applicable rule list.

Referring back to FIG.3, having constructed the applicable
rule list 290 based on the facts 102 that were provided to the
system 100, if the applicable rules list is not empty (step 330)
the rules processing engine then selects one (e.g., in sequence
or in an arbitrary order) of the applicable rules from the set of
applicable rules, removes the rule entry 292 for that rule from
the applicable rule list 290 and performs the actions specified
by the rule specification 254 of that rule (step 340). An action
of the rule can result in a fact being added to the fact base 110.
If such a factor facts are added (step 350) further processed by
the rules processing engine 160 following the same process as
described above for added external facts (step 360). That is,
the rules processing engine determines which identifier/at
tribute pairs of the added fact are represented in the features
table, and for each of these identifier/attributes, it locates the
condition element entry that makes use of that identifier/
attribute and evaluates that condition element. If the condition
for a rule whose condition uses that condition element evalu
ates to true, the rule is added to the applicable rule list 290 if
not already present and if the condition evaluates to false, the
rule is removed from the applicable rule list if it is present.
Having processed the actions for the rule selected from the
applicable rule list 290, the rules processing engine repeats
the procedure by selecting another rule from the list until the
list is empty (step 330).

In the description above, the bit vectors 256 in the rules
table 250 and the bit vector entries 242 in the selection table
240 are described as using single bits associated with each of
the condition elements that are used in the condition of the
corresponding rule. Use of single bits enables an efficient
comparison of the two bit vectors, for example, using a single
machine instruction for bit vectors with the number of bits
being less than or equal to the word-length of the instruction
set architecture being using to implement the engine. Alter
natively, other efficient encodings of the information in the bit
vector 256 and selection vector 242 can be used, for example,
using a single byte, word, or other size of data element asso
ciated with each condition element. In Such alternatives, the
comparison may not be accomplished using a single machine
instruction but may nevertheless be very efficient, for
example, using an efficiently implemented loop of instruc
tions.

The various “tables' shown in FIG. 2 are not necessarily
implemented as arrays of fixed-length records. For example,
each entry of each of the tables can be stored as one or more
data items linked by pointers. This enables different sizes of
bit vectors 256 and 242 for different rules.

US 7,433,858 B2
7

Various pointers of the data structure, for example pointers
226 and 236, are not necessarily stored as memory addresses
into a memory in which the data structure is stored. For
example, these pointers may be relative memory addresses,
record offsets, record indexes, or other forms of data that
enable efficient access to the destination of the pointer.
The bit vector 256 of each rule entry 252 is not necessarily

required, for example, if condition elements must be com
bined with a single operator, such as with an AND operator.
Furthermore, more complex logical combinations of condi
tion elements may be supported while maintaining efficient
representation of the required combinations of the condition
elements and the evaluated values of those condition ele
mentS.

The storage locations of the selection table 240 are not
necessarily preallocated. For example, the storage locations
in a bit vector 242 for an entry for a condition element may be
allocated on the first occurrence of a feature upon which the
condition element depends.

In one application of this approach, multiple sets of facts
102 are to be processed, each set with a corresponding rules
base from a variety of different rules bases. For each of the
rules bases, the rules compiler is used ahead of time to form
the compiled rules base 125 and corresponding initialized
dynamic rules data 135. The compiled rules base and the
initialized dynamic rules data are then stored for later use. For
each set of facts, the system loads the corresponding com
piled rules base 125 and initialized dynamic rules data 135.
For example, the compiled rules base and the initialized
dynamic rules data are stored as memory images that can be
loaded efficiently into memory of the computer hosting the
rules processing engine. If successive sets of facts use the
same rules base, only the initialized dynamic rules data 135
needs to be reloaded before processing the facts because the
compiled rules base does not change with processing of facts.
The rules base is not necessarily represented explicitly. For

example, a rules base may itself result from the compilation
of another form of information structure, which may be other
forms of rules or constraints applicable to a particular appli
cation domain. In such a case, this other form of information
structure may be compiled directly into the data structures of
the compiled rules base and dynamic rules data without nec
essarily explicitly representing the rules base. The formation
of the data structures may not require a rules compiler. For
example, a text representation of the rules can be loaded into
the system and an in-memory representation of the data struc
tures built during that load

Alternative versions of the system can be implemented in
Software, in firmware, in digital electronic circuitry, or in
computer hardware, or in combinations of them. The system
can include a computer program product tangibly embodied
in a machine-readable storage device for execution by a pro
grammable processor, and method steps can be performed by
a programmable processor executing a program of instruc
tions to perform functions by operating on input data and
generating output. The system can be implemented in one or
more computer programs that are executable on a program
mable system including at least one programmable processor
coupled to receive data and instructions from, and to transmit
data and instructions to, a data storage system, at least one
input device, and at least one output device. Each computer
program can be implemented in a high-level procedural or
object-oriented programming language, or in assembly or
machine language if desired; and in any case, the language
can be a compiled or interpreted language. Suitable proces
sors include, by way of example, both general and special
purpose microprocessors. Generally, a processor will receive

10

15

25

30

35

40

45

50

55

60

65

8
instructions and data from a read-only memory and/or a ran
dom access memory. Generally, a computer will include one
or more mass storage devices for storing data files; Such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices Suitable for tangibly embodying com
puter program instructions and data include all forms of non
Volatile memory, including by way of example semiconduc
tor memory devices, such as EPROM, EEPROM, and flash
memory devices; magnetic disks Such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
disks. Any of the foregoing can be supplemented by, or incor
porated in, ASICs (application-specific integrated circuits).
Many other implementations of the invention other than

those described above are within the invention, which is
defined by the following claims.
What is claimed is:
1. A computer-implemented method for processing rules,

the method comprising:
providing a static data structure (125) and a dynamic data

structure (135) for processing rules,
wherein the static data structure represents rules in a

rules base and the dynamic data structure includes
storage locations for working data produced by pro
cessing external facts according to the rules repre
sented in the static data structure,

wherein each rule in the rules base is specified according
to a set of condition elements, and for each rule the
static data structure includes a data vector (256) for
said rule such that each element (257) of said vector is
associated with a different one of the condition ele
ments according to which the rule is specified, and

the dynamic data structure includes a corresponding
vector of storage locations (242) for said rule such that
each storage location (243) of said vector corresponds
to a different one of the elements (257) of the data
vector (256) for said rule in the static data structure
(125) and is associated with a different one of the
condition elements according to which the rule is
specified;

processing a plurality of facts, including accepting a cur
rent fact (200) and storing values resulting from evalu
ation of condition elements that depend on the current
fact in storage locations (243) of the dynamic data struc
ture (135) associated with said condition elements; and

determining whether a rule of the rules base is applicable
by comparing the elements (257) of the data vector (256)
in the static data structure (125) for said rule with the
values stored in the corresponding storage locations
(243) in the dynamic data structure (135) for said rule.

2. The method of claim 1 wherein each data vector (256)
comprises a bit vector such that each element (257) of the bit
vector for a rule in the static data structure (125) is repre
sented as a single bit and each vector of storage locations
(242) comprises a storage bit vector Such that each storage
location (243) of the storage bit vector in the dynamic data
structure consists of a single bit location; and

wherein comparing the elements (257) of the data vector
(256) for a rule with the values stored in the vector of
storage locations (242) in the dynamic data structure
(135) for said rule comprises comparing two bit vectors.

3. The method of claim 1 wherein the static data structure
(125) further includes a condition element table (230) that
includes a plurality of condition element entries (232) such
that each condition element entry is associated with a condi
tion element and identifies one or more storage locations

US 7,433,858 B2

(243) in the dynamic data structure (135) that are associated
with said condition element; and

wherein processing the plurality of facts further includes
identifying the storage locations (243) for storing the
values resulting from evaluation of the condition ele
ments using condition element entries (232) of the con
dition element table.

4. The method of claim 1 wherein the static data structure
(125) further includes a feature table (220) that includes a
plurality of entries (222) Such that each entry is associated

5

10
with a different identifier/attribute and includes one or more
elements (226) that each identifies a condition element rep
resented in the static data structure (125) that depends on said
identifier/attribute; and

wherein processing the plurality of facts further includes
determining entries (222) of the feature table (220) asso
ciated with the current fact and determining condition
elements for evaluation according to the elements (226)
of said entries (222).

k k k k k

