United States Patent

US008732538B2

(12) 10) Patent No.: US 8,732,538 B2
Krishnamoorthy (45) Date of Patent: May 20, 2014
(54) PROGRAMMABLE DATA STORAGE 7,170,788 Bl 1/2007 Wan et al.
MANAGEMENT 7,218,552 B1* 5/2007 Wanetal. ... 365/185.18
7,355,888 B2 4/2008 Hemink et al.
. . 7,355,889 B2 4/2008 Hemink et al.
(75) Inventor: Senthil Kumar Krishnamoorthy, 7.539.920 B2 5/2009 Choi et al.
Sunnyvale, CA (US) 7,660,941 B2 2/2010 Leeetal.
7,716,415 B2* 5/2010 Sharonccceevenee. 711/103
(73) Assignee: ICForm, Inc., Sunnyvale, CA (US) 7,734,861 B2 6/2010 Lietal.
8,174,905 B2* 5/2012 Shalvietal. 365/185.29
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 280 days. OTHER PUBLICATIONS
Jim Chen; Har, D.; Mak, K.; Schulz, C.; Tremaine, B.; Wazlowski,
(21) Appl. No.: 13/416,027 M., “Reliability-availability-serviceability characteristics of a com-
. pressed-memory system,” Dependable Systems and Networks, 2000.
(22) Filed: Mar. 9, 2012 DSN 2000. Proceedings International Conference on , vol., No., pp.
163,168, 2000.*
(65) Prior Publication Data T
US 2012/0233523 A1 Sep. 13, 2012 (Continued)
L. Primary Examiner — Steve Nguyen
Related U.S. Application Data (74) Attorney, Agent, or Firm — Ash Tankha; Lipton,
(60) Provisional application No. 61/451,139, filed on Mar. Weinberger & Husick
10, 2011.
57 ABSTRACT
(1) Int. CI. A method and system for managing storage of one or more
Y ging 2
GI1IC 29/00 (2006.01) data blocks in a programmable data storage device is pro-
GO6F 11/10 (2006.01) vided. A data storage controller partitions each of multiple
(52) US.CL data blocks into multiple sub data blocks comprising a num-
P p 2
CPC ... GO6F 1171072 (2013.01); G11C 2207/102 ber of bits based on one or more index value descriptors. The
SpC 714/722(2701143/;)113 data storage controller generates transition vectors from each
USPC e ; of the sub data blocks by applying one or more transition
(58) Field of Classification Search functions. The data storage controller encodes one of the
CPC ..ol G11C 2207/102; GO6F 11/1072 transition vectors for each sub data block for obtaining a
USPC T PRSP 7147722, 71 8;365/201 residual sub data block Comprising areduced number of bits,
See application file for complete search history. thereby resulting in increased bit space. The data storage
. controller generates a composite data block by merging each
(56) References Cited residual sub data block. The composite data block is config-

U.S. PATENT DOCUMENTS

6,041,001 A * 3/2000 Estakhriccccoovenenn. 365/200
7,013,378 B2* 3/2006 Mottaetal. 711/203
7,120,729 B2 10/2006 Gonzalez et al.

urable for writing to one or more regions in the programmable
data storage device free from a disturbance caused by write
operations to other regions.

36 Claims, 13 Drawing Sheets

PROVIDE A DATA STORAGE CONTROLLER COMPRISING AT LEAST ONE 101

PROCESSOR CONFIGURED TO CONTROL CONFIGURATION OF ONE OR MORE J

DATA BLOCKS FOR THE STORAGE OF THE DATA BLOCKS IN THE
PROGRAMMABLE DATA STORAGE DEVICE

]

PARTITION EACH OF THE DATA BLOCKS COMPRISING MULTIPLE BITS INTO |102
MULTIPLE SUB DATA BLOCKS BASED ON ONE OR MORE INDEX VALUE

DESCRIPTORS

1

GENERATE TRANSITION VECTORS FROM EACH OF THE SUB DATA BLOCKS BY
JAPPLYING ONE OR MORE TRANSITION FUNCTIONS ON EACH OF THE SUB DATA]
BLOCKS

!

ENCODE ONE OF THE TRANSITION VECTORS IN THE TRANSITION SET FOR
EACH OF THE SUB DATA BLOCKS FOR OBTAINING A RESIDUAL SUB DATA
BLOCK

!

GENERATE A COMPOSITE DATA BLOCK BY MERGING THE RESIDUAL SUB
DATA BLOCK QOF EACH OF THE SUB DATA BLOCKS

105

]

‘CONFIGURE THE COMPOSITE DATA BLOCK FOR WRITING THE COMPOSITE
DATA BLOCK TO ONE OR MORE REGIONS IN THE PROGRAMMABLE DATA
STORAGE DEVICE FREE FROM A DISTURBANCE CAUSED BY A WRITE
OPERATION TO OTHER REGIONS IN THE PROGRAMMABLE DATA STORAGE
DEVICE

US 8,732,538 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

8,458,568 B2* 6/2013 Cideciyanetal. ...
8,533,564 B2* 9/2013 Yurzolaetal. ...

2010/0042900 Al1* 2/2010 Khmelnitsky et al.
2010/0157675 Al 6/2010 Shalvi et al.

2011/0066922 Al* 3/2011 Wezelenburg et al. .
2011/0320915 Al* 12/2011 Khan ...

...... 714/774

OTHER PUBLICATIONS

Ningde Xie; Guiqiang Dong; Tong Zhang, “Applying transparent
lossless data compression to improve the feasibility of using
advanced error correction codes in solid-state drives,” Signal Pro-
cessing Systems (SIPS), 2010 IEEE Workshop on , vol., No., pp.
31,35, Oct. 6-8, 2010.*

. 714/763
. 714/764

...... 714/773
...... 714/773 * cited by examiner

U.S. Patent May 20, 2014 Sheet 1 of 13 US 8,732,538 B2

PROVIDE A DATA STORAGE CONTROLLER COMPRISING AT LEAST ONE 101
PROCESSOR CONFIGURED TO CONTROL CONFIGURATION OF ONE OR MORE J
DATA BLOCKS FOR THE STORAGE OF THE DATA BLOCKS IN THE
PROGRAMMABLE DATA STORAGE DEVICE

PARTITION EACH OF THE DATA BLOCKS COMPRISING MULTIPLE BITS INTO |102
MULTIPLE SUB DATA BLOCKS BASED ON ONE OR MORE INDEX VALUE J
DESCRIPTORS

GENERATE TRANSITION VECTORS FROM EACH OF THE SUB DATA BLOCKS BY 33
APPLYING ONE OR MORE TRANSITION FUNCTIONS ON EACH OF THE SUB DATA
BIL.OCKS

ENCODE ONE OI' THE TRANSITION VECTORS IN THE TRANSITION SET I'OR
EACH OF THE SUB DATA BLOCKS FOR OBTAINING A RESIDUAL SUB DATA 104
BLOCK J

GENERATE A COMPOSITE DATA BLOCK BY MERGING THE RESIDUAL SUB
DATA BLOCK OF EACH OF THE SUB DATA BLOCKS 105

CONFIGURE TIIE COMPOSITE DATA BLOCK FOR WRITING TIIE COMPOSITE
DATA BI.OCK TO ONE OR MORE REGIONS IN THE PROGRAMMARBIE DATA 106
STORAGE DEVICE FREE FROM A DISTURBANCE CAUSED BY A WRITE
OPERATION TO OTHER REGIONS IN THE PROGRAMMABLE DATA STORAGE
DEVICE

FIG. 1

U.S. Patent May 20, 2014 Sheet 2 of 13 US 8,732,538 B2

EXTRACT 201
INFORMATION ON THE
ENCODING OF A PRIOR
DATA BLOCK

v

PARTITION PAGE DATA| 202

INDEX VALUE INTOSUBDATA | /
DESCRIPTOR [g1 CKS BASED ON ONE

OR MORE INDEX VALUE

DESCRIPTORS

7 203

SELECT A SUB DATA
| BLOCK

GENERATE MULTIPLE
TRANSITION VECTORS 204
CONSTITUTING A /
TRANSITION SET BY

A 4

206 APPLYING A
y / TRANSITION FUNCTION
LOOKUP TABLE FOR ™ .
INDEX VALUE l
DESCRIPTORS AND
TRANSITION L, SELECT THE 205
FUNCTIONS TRANSITION VECTOR
WITH THE LOWEST |/
NUMBER OF ONES

207

NUMBER OF ONES <
PREDETERMINED THRESHOLD?

@< COLLATE BITS FROM | 208
THE SELECTED SUB
DATA BLOCK BASED |/

ON DISTINCT INDEX
VALUE DESCRIPTORS

209

ENCODE THE SELECTED /
TRANSITION VECTOR
TO GENERATE AN
ENCODED BIT STREAM

FIG. 2A

U.S. Patent May 20, 2014 Sheet 3 of 13 US 8,732,538 B2

O,

ALL TRANSITION FUNCTIONS
APPLIED?

212
211 4
SELECT THE ENCODED STORE
BIT STREAM WITH THE / DISTRIBUTION OFF
SHORTEST ENCODE ONES AND ZEROS IN
LENGTH THE LOOKUP TABLE
SWAP THE BITS OF | 213
TIIE SELECTED |/
TRANSITION VECTOR
WITH THE BITS OF THE
ENCODED BIT STREAM
MERGE RESIDUAL | 214 219
SUB DATA BLOCKS
INTO A T.ARGER / /
DATA BI.OCK COLUMN WLIGHT
LOOKUP FROM BLOCK
NUMBER AND LOOP
COUNT
REACH T.OOP
COUNT?
/ DISTRIBUTE THE 218
INSERT INFORMATION » Ug#;%ﬁig%g}ﬁg y
ON INDEX VALUL ERROR CORRECTION
DESCRIPTORS AND TIIE BITS BASED ON
- IRANSITION COLUMN WEIGHTS
FUNCTIONS 10 THE
LARGER DATA BLOCK
l 220
GENERATE PARITY | 217 M AI;BI]{) %ﬁ%%snggm) L/
BITS AND/OR ERROR |/ COLUMNS
CORRECTION BITS ' T '
221
GIONLRATL THL
OUTPUT COMPOSITE |/
DATA BLOCK

FIG. 2B

U.S. Patent May 20, 2014 Sheet 4 of 13 US 8,732,538 B2

PAGE

BLOCK COLUMNS

FIG. 3

US 8,732,538 B2

Sheet 5 0of 13

May 20, 2014

U.S. Patent

I

HHIINNN JD0Td

¥ "Old

SNINY'TOO
DO A4LHODIIM

dJ71S HOVd

v

U.S. Patent May 20, 2014 Sheet 6 of 13 US 8,732,538 B2

FIG. 5

SUB DATA
BLOCK

M
@)
Q
—
M
<
H
<
a

US 8,732,538 B2

Sheet 7 of 13

May 20, 2014

U.S. Patent

9014

LIS NOLLISNVIL

j§ EEEEN BEEE © BN BEE BEEEE BREEEE BEEE B EE EERcSsierssd

l EEEE EEE B B BN BEEE BEEE BEE B | B | EEpPectEib

PIOM
pusuoll I T T THEN THE B N N NN NN EEN EE W srocavscvoesxo

cHEEN "HEEN N N N EEEEEEN EEEN EEEN B N N EEROQrAI6LISVIX0

= BN B BER B | HENEEE B BEE B BEE B || EEsevigaicct o

HdAL
NOLLISNVT,

US 8,732,538 B2

Sheet 8 of 13

May 20, 2014

U.S. Patent

LDl

f

JOLIIA
OLLISNVIL ‘dVvIN XAdNI

B E B B _

SSVd HAOONH ANO 414V JAD0Td VILVA 40 dVIN DTN

HAOONT H404494 AD01d VIVA 40 dVIN O'TIN

AANINVIDOUd
JdV LVILL STTdD DTN ALVOIANI STT4D ddAavIIS

SNIATOD dALHOIIM JdHOIH

U.S. Patent

FEEDBACK PATH
TOMODII'Y
WEIGHTS

May 20, 2014

Sheet 9 of 13

US 8,732,538 B2

EXTRACT ENCODED
INFORMATION FROM
A COMPOSITE DATA

BL.LOCK

801

CHECK PARITY BITS
AND ERROR
CORRECTION BITS AND
RECOVER ERRORS

805
/

COLUMN WEIGHT
LOOKUP FROM BLOCK
NUMBER AND WRITE
COUNT

802

v

SPLIT THE COMPOSITE
DATA BLOCK INTO
RESIDUAL SUB DATA
BLOCKS

803

v

DECODE EACH
RESIDUAL SUB DATA
BLOCK BASED ON THE
RLE ENCODE
SEQUENCE

804

v

EXPAND EACH

DECODED RESIDUAL
SUB DATA BLOCK
BASED ON THE
ASSOCIATED

TRANSITION FUNCTION;
AND INDEX VALUE

DESCRIPTOR

COVERED
ALL

ENCODE
LEVELS?

MERGE THE SUB DATA
BLOCKS AND
RETRIEVE THE
ORIGINAL DATA
BLOCK

FIG. 8

206
/

LOOKUP TABLE
FOR INDEX
VALUE
DESCRIPTORS
AND TRANSITION
FUNCTIONS

806

NO

808

US 8,732,538 B2

Sheet 10 of 13

May 20, 2014

U.S. Patent

6 "OId

A00SDTLRESOSDS LY LLAEICSATANLHHYS 8UATUTLAANAROSOISHIAGTAT S TVAAHOSLSOTV ERUIDTAVHTELOVYOAHHLETOFBTOETTHAES 0996 T I eCT
LOLSOHTTLITII6SCTLVAIY LLEFDEIUAITYDEILD9IABEIEBTO8HIOPELHBTCEILHSTOVLSO6TVIIAHCOLOHASIEHEOVITLOCHITOHIDUISLLALHI6HYESI0TC89H
HEHLOEYHL89ESH OO THIAOV LT8LVY TH60 IV IHI8680LATIO8 T D09U8H69H86 19CHHH Y LHI80HFYO9LLY 6€8C06DS TOHHAV T1HHD96186V6C8 1901 LIAVOU
HOSVVLEDTEYTACSILOTYId I H6AARYIATETTALOLTISALIATCOTRD09EY U Ay DAEID8DYHCE]V LAE0C069H Y DIOVIH I VIDHLY LECOLO008IRTDIIECICH]S LAHD
£E66V17060V L6V STCHOHAdrVAHECUT8E8L6HOLULTTAS8D9DHOAV EVVOrPHed L6V S8APTHIIHACY8LT0SEUO0HISTOV 160UV IEYILIDVILI60LCUIT6
YO I#P0d6ddV cO810HEIDDedC0rET8IT65099D5S0VHEBTHYSS06T8BE6CSVIHELBTY EUN06L0E0TCY HE0ErSI6E AV ATDITHITAT0898S SOOI LYATTHS T LAYBL
V6L0SVHCII0SS STV TTLHOS06dDEHAVO0E 16TV OrdLiyVILT8UUDC69d8LOVC6U6DU6STVIETLUADSTREOTILTOTEDO0THICILOV8OTHUDIHII9D610£d8UDD
SOOLIGVPIAA96T9d I TODV ICVUSHILTL8HCIDHEA68PPAPO TAI8AIT IS SO YSICE89CS V8ISV 860HIDLBUBLUCOTHEYL66HUBLLHCOVIUAI6HBIBUITY
Td6SHCLUSLIVIS8HO6E6SVHTLLETITOV LA 0018 DAd0V 8T TADLHTHICS8IFHLTH0DEIITIBEITSTLIOHAV86SLHCH TFod TAVITYATCTAUSOETALLOEAUI
16646 dLIOPEAVETHSTLYTLYOVPHHEETTOVHION6HLAY ITFOVI619V8SLTAATISTHOVI00986€88VV C00FHASEUASOATOLO6THO6)DVUAVFHYV L6 SHO6DH8T00VI0
STIHLO6T00084HU6AdVOLITAL Y TA1L9C96HH006AITLASHI8LI0E TI86 1LYV IIr0d6C6dD09601CCOAT6H09508Y 9165 8UULS L06D8645591CALY 606V LE88B6H
VeeoddovV VATV LSYTLOLO0VOHTH69CCH69IHHI0d000V OV T TOSOUAIID8YHIVOCOYIH LY LAALO8S TIATIEH8H LD680ASFCOE8DUD0S0HEHH T LIF061d 8
908d8611D1666(9T8D00CITIOYITHOVHTHDELILV TALY IOV SAIHODIIE8EIABSTE6LAOT6ABSODSHPHEISA619DUVITDI0€01THUIISVEAVEAVTILILEDS
HAR6YDO6COTIOVIDLTHAGEITOTHO8699E0THSHIHITATTTTILY V HIRUNTHATOVOH IRV ISTREINTH]LITHOC T COTVELLSRRURS TV THACTYTRIVRGTTRAR Y VIHD)
CA6CIHIVIDSOE0TVISTYILHABADTECSDEVT89dI8UUV I H6VO6EB0ALT86L9DSHT0LOAYS VYO8V LrHHS HHedToDAIe9dd6d16C6£8ICTTLY S86THS690THE
$0666232ed8DHOVTL9D999d8C8EDLV IV IDOHSTHrdSL868d8T6SIDDTIE8YIB09SYIETCI6YLECOHTICTLS LAY HA0DEVIUTOd6AT€AUTTLIOLY 0SIV0991dHOHL
1440V L9 EAT L0 STISVIIVHIV I LOEC6EVV IVUIH6TAdArE00eSY 6 dUS8DSHIHT LIV TV VTHID T SHUAYIVIHRID TV LHITHC Y LAFRUVEVEVOL6
06L21SH089 THLOAICTLIY DUV SPAY TCUHLTTI0E6CIITRICEY AP EELTHO TALV LS SHASTUAHBITOVILTVHHSY LT T9A8 L8 edH L HH6HUHTIEIISTYATHO88
S0C9LATD YO8 60C8dY VAT FOS66¥ EIDVHOS LHITH6ID8V68D€0C9r8CUIDUILYIHO6ELSBIV0T6L T6STHIDSIDTCVO68SVS8ELVOTY TIAIS6HULIVV6DICI8S
€8OVIOLLVEDTHOATILAVIOIY8TSA LA 101968 1047 SHALLTHS THATAIDBAI 69D E6d VI HDIA6UA YA T SHALHOV SVAUADIAVArAV 0O drHd 66y LA
0TO0LLTOTOSEOVCTCCO6TUL06ECLILAALE6L8V E089DEDHITI8LIT0TLICOILOUAYUSH6AS LAC0YI6H00HC8TI9TSVIL86HIFO6CCOV LIVITHYEHE H0080HHISCHO0
DEOVSASVIrIVAAd90d18911$840STIOE 0 18H9d e U6V S LI edSH8 LAHSS A LATOSOYH A FOH0DTHIV LSDSH0D6606CE9VITCS 186d6drSErVADUS
HHALIVIOSHTV €TLAROHTEVO6TRTILOTIAATOHSIUAIIIVISLESEDV EDIDEHIBI6 T H08HIUIABOTATV LAGLFAVI6LAV IFD6UTAISHII8EVTOIDTTHI T8IV 1
016€D 144UDUL6AUSCUHAULO IS LHTVEUTUBOLOVUSTSYCIB10ESYI8Y VUUCHHH 1 6048CHOAE 1TV TATESV 1AV 1940€ 1200608761V U1 THIC86890THU 198
629HVVHOILAI006VATHI6I L TVAVTIALIVOPVIIE6FIVAILITSAVIEVSOT8I88DIF8LAPEITOUE THSS L68666VVATAYHE0T0968c0USESTVIILVVILVIO0
VoI1eD888rddIELEvor8Y6IVAd0SOETOHHE VIV IToSVIOd dr886ATS8C6CLLILSDDDHUAVYV A EVSHUSLATSVOHVOUTYIEOIVE991L5906T80V 618
HEELVOLVIVSTELIDTLOLATOANOSIIPADADEHTHLIOVHHSSSERT(IHE THOVHLOTVABSDDDUDIVEGTIVHUOTITSHTV AR LODH00DTAAEDBR06VHOLAT IRV AL
D00VIC THICTHLAHA9D96UIT6ATTIIAH6.6999S6SHT P8 D0dAVI8HI060H8AV [V LATT68SHOLYALCI8AICOALVTAT8OISY IDAedU6EH6UVS8ETLY TV
€ECTVIB080ITAI0DT68:IVCI09CI0V Y I88EEI8S TSTULDISOCT TDSTTTHCIAL99SVOI6019488162¢COUDINTOHV86AVII0D9CHLAURID Y I6V LY VIOV ST E
SVTIHIVVATIDD0d6 THAVIVO6H8AIL8S LE6IVALHLTIADDL00VOICOHTTHIC T AV 18V OISV AHOV D IVAGYATET eI VIOVIHY cdD0IV091I8LE8UD
CrSEVErLSAL69eDUUTHTE0THVALOLATITI0YS80D U LOLII8Y 68LUIHVI0DH0DV S96VV d8UPYCOrHrHI9TV 1 TDTAIUASOTV0I8S6 £V OUIHdLABUS L6688 EE
POr1€060d18ALIV HHTE0CAOTS8TUTTO66106.LFHODPID6SY IVIIATVIVE8AU0H6 Y TI6CI SFHrIVA6LE6106UIT60£0DITL00UUTD616dE AV 06799V S8V008
TATTHE TPV ETOHHS YV ATOr €694€V LTOFIOVUT TV SVHEVATYOL THTCOVHITCoS STUUD 6 HLATAIH LI HH8DT€68VIOVoVoSdCd I 1L8HETICE TAHO0HV S TOEDV 6
HIP8TAC8OULE8DASOHIHSevySI06 VHHLIB0LICH IV 8¥8LY 9 LDTO6VHB06ATYE TCT LIS TOA80D 1VIADSUAYTCO0CYOS6UCLY STALHCOVYLLISALY CHEC6C60L
DV9469051L6S8T8UII8YVIdHTIVI8TI8000dTIU6TI6HA64TSAV090C00059D697ESTHI0A966L cHIC e SHIHLTHII8DEISCoQICS VAOS IS ETHAS T 666 dTUL
1V L0046 1SCS010980HCL I8 SHATTErHABOHILLHA0S VI TA6H THTHLA68HVISOCAUATY I CIVATHD e SHVAUBEVYS68 T LLACHIHAVOVECT LHHL8OYV VI

US 8,732,538 B2

Sheet 11 of 13

May 20, 2014

U.S. Patent

01 “OId

ARcAATOTS618ddHESDTSFAATEA0PI0TRO6TRAAICOT LASHHTYAIDRLOVEDLAILLODYEQT T6D8HHSH0STOETHE TAT IDLYP06LTHAS64£9LATOD0AT6EU009
06681€26£C8L8VTHECAFII 6 1ULC0SHAODTIULIAS Hr69rA80d TATIHES00LDECATOELDATVOLLOADSTSOHASIEC6D8U0DI8VIED TOHULH618DTAT
6V ERCTIHEYD 120ASGESHHLEVTTOOAUTLISTASTLHETTLOEHRISSOFCTU LY LI TDS EHTSALOMTHDODIEYALIDAG6ETTTIDOHCHSFO00LVETHETTT6AHROT

FH24408AI0A0AS YHOLIHCE8 SHOEHO0 A6 HUADTHAOBLLD6£COEALIUTDHIIDACSFOD I AddedrCATH IOVt LAIDV 1091 YO 1AVA096CerHE9d Y
12edddLSerdAIVED6LTH0I0690CE 9D T EEH ECATHOLATYHH 080U T0AL0DOTHAD TIASHTOA0IHLOTOAS6IALDFBSTOT8DIAD0OVLEELDBLETDHSLTOT
0976 0d4£600U P8I TI0CV YOO I0d6ULEDI05 16,0t LAV £6£ 1€D9645HSHP00AHSH0DAYHLODED 1S T O8HAIJ0S PV CEHS0UBOY L LY LA9BEDLED0S8
A6L8rOEDASHAPATFID0DESEHOVFSES TAFDLTATITOAUBDIAL A TEECOTIE860CHC IOV VY EDASEADTHOYCLIILDASVHOS VT8I THOIETYI8HSALIT S
L¥DD8LHECH0dTTACO80AOTYOVAULTEATEIL IO Y LAUDTAEDLESTAEYTHY LI THOHAT HrA0Y0 TAATILELHTIDZDH00EDT6A8DHUAOSTHEOTEDSS8LVO

6780 EODADTISTIOOSELSTLTIOLLLLOLY AT EALT8DDILITFVIOTOSH0DED8II T ETUADLTILOE6BVOLTO0ATOS EAEBSDTISLAOGLTIAVTACIOATAOAD
SHPIAATer09eddLR000dD6dd.9HLY0S¥604I8EDHHR0DTIDERIEFORTCIOIIACreAAD SO0 T IED9eADEIRAPIA YA LA TVOD09AEDATIT0EDUTA0A
D8Cer16€8L6d,1dTHI9¢A0008S 190V e 8HUIAIOEEVAY LI TTHOSAI60TATOTH6LHHH T LO0ACHAO €I EY D08 THLITOH O YIOT EEDICE THF8ECI6LEATE
067£dSOTCISA0TF0016€069UDTTLIDLYAUIEHF0960dA80CLOY EAOLLYAITEOSAV £LECOOLY Y LIHIL EVF €CHUAICF009U0L8961 SIEEISAUADTIATHYTEVD

HISEPHEHHOD LDD 1EHOT0 LY Ed € 1 dOCLEA CHUOPHOLYOEVH 18H080CHEEOPUOFEFULID0BLE0H8CED00d U D L eUDDDHE0HUAVUULESTIE6A8USTISO

SETHHLOAI IO TLT0AVTS69E98TEH6.80€10dECTFIDDTLOHUIIBTLICEC TOHOIID 00T ST TAUAYHEeHEIHT80ECHOA T £61IEV T L0IH0008TTELEY
ATTLATeLrOdPETLE8COVAIE0H6H090L0dLD0e APV IO T 1T LDV IATEVHUABATV6I09LH 1004099 D6HC0TSLO0S T+ILV (8166 TS L6 T0AULOLT
O0rAdL08D6£dcc TASTIITHECTISOISUATTAFTOISAVAULEOYTLODIELADDEISSVB0T8TADTOYAIOD ST TATHA6S D L0CS06AEDTTOFIOIF 1,609

092090 TT1D0ALAHLOICR0HED0BT LLLIDTVOO0T LIS6£HEAFALI0 T DDA TFOIRTEDSIS LAGISO6TUSIOGHTTILLLLIGITYISLVV I6TAYeJADATIOTAIH
IVAATOTOJ0HLEAD8A6 T8V OV ITULTO0UAEHIVOLEYIUS EJ0CHOTADLAS Y LOHIEY [EVETICETILLTIDESADBHLTDEISEH09LDUED0HIC606HI0DD8FHLYLO
0£DLAVANEDSHOVTOASHHALDEATIIDFEORADBATENISHTLIEDODOHEFOVCOAOA LY DABAERLS LOOHTE T LOVAGLECOEABTAARLLESDHREEETV TOHCIAT YL
8PA0ESOAPI8EETODULABTTILLETEOVBETIDHISOOCIUTD80LAY 638097 IOIdr99SHLALT0D9dI0DLTD9E €A SO D TOHLICII0AH0O6 THUARLOBDUH6C
LYE0DTAr$OI0d6d 99 DTAULTATOVIOD0THTILE I D085 D0 DS8CEI0ELIBIDTCIOEDVISLECOCULVEDTLEE86LITISIIAPBEULYBIL0ITITVTBO8
06AV8d40968¢AEAV 61891 1eD0U0HY ¢rdD0C60LOH0LU69UAICHS0D T8I EIEBLLTIS66d6dTIDTIHT cd6V 1990 10409ddrdrV0Adss HC0H0r 1D

CIDASHASHFADSH Y 1 €HE04092920€L0DDTHT LALLETBASD0IAUTABY S VATACH I TAILIFOSH T T TETOHFB00A 191068188 S108dUOTOSAC60ddOH
18e£86(dEHI SO Cedee0dCd8DdHE S DLV IO PHIE T0DH A9 TVO0 TArALAT68LDULATISOCAOIVOLALE LIFOFODLEHOPA TLACATSITLIDLESTAHILOO
£HOS9ILHSDT000

00

00

00

00

00

00

00

00

00

00

00

00

00

US 8,732,538 B2

Sheet 12 of 13

May 20, 2014

U.S. Patent

A T IOULNGOD
ADVRIOLS VIVA

4
0L
.,..,1:#./..7 .,,»..1?/.!),

...;L.' -y
Y MOMIAN
m/r ' .\.,»4-‘|v

i O e

Orrt

1011

00L1

[ARNIK]
\ HTdV.L TINAON HTNAONW
AMIO0T FLIAM JD0T1d LNANNOISSY
LOTL IHOIIM
v / va
TTNAON 8011
6011
A ONTHOIVIN AINAON
IHOTAM ONTAOOINA OSSIOON
o1 7 7
HOIL 9011 AVIAV
TTINAOW TOVIOTS
/1 SoaHd sowua AINAOW vIvd
HOLL /] NOLLVYANAO MAAODAA
qQFo1T JOLDHA \ \
NOLLISNV Y.L Lrd1IA)
SO11
TINAON AAOWAN
NOILLY¥ANAOD TINAON 7
D01 VILvd ONINOLLLLIVd 011
HLISOdINOO D014
p 'l /|
ProI11 €
coll POLL
ANIONT LVINIOA
/7
POI1

I TTOIINOD HOVIOLS VILVA

WHLSASHS HOVIOLS VIVU

US 8,732,538 B2

Sheet 13 of 13

May 20, 2014

U.S. Patent

Ve
011

\ UNVN

(4114}

/1 anvx

(4111}

\ AUNVN

(4114}

)
AJONWHIN

HSVL

(NVN

KIOWIN
HSV 11

——

AJOWHIN
HSV'IA

N
AMOWHN

HSV'I4

S ——-—

(ONASV
HIDDOL TANO)
AV RAALNI
AIOWAN HSV T

—

(4] 1

S ——

(I0J/dIDd/SVS/VLVS)
HOVIAALNI WALSAS

/] ddadadnd /1 ¥0ssad0ud
1071 | 1NdLNO/LOdANT 9011
AOLV AUNHD LINQ
X 4a0D TOMLNOD
H ONLLOTIIOD JOWIA
d AOWAL HSV'LI ANVN
1714} €071 r{|r4}
AATIOUINOD HOVAOLS VIVA
4
c011

US 8,732,538 B2

1
PROGRAMMABLE DATA STORAGE
MANAGEMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of provisional patent
application No. 61/451,139 titled “Programmable Data Stor-
age Management”, filed on Mar. 10, 2011 in the United States
Patent and Trademark Office.

The specification of the above referenced provisional
patent application is incorporated herein by reference in its
entirety.

BACKGROUND

The method and system disclosed herein, in general,
relates to storing data on a flash memory device. More par-
ticularly, the method and system disclosed herein relates to
controlling the number of cells programmed to store datain a
flash memory device and improving error recovery.

Flash memory devices use floating gates to store data.
Flash memory devices comprise cells, for example, single
level cells and multi-level cells. A single level cell (SLC)in a
flash memory device holds one bit per cell. A multi-level cell
(MLC) on a flash memory device holds multiple bits in each
cell, which reduces the cost of flash based storage. As fabri-
cation process geometries on flash memory devices shrink
and the cells get smaller, charge in the floating gates gets
smaller, and the cells are more prone to errors. Moreover, the
endurance of each cell, that is, the number of times a cell can
be programmed and erased, decreases with process geom-
etries. Multi-level cell flash arrays are particularly susceptible
to error due to shrinking geometries. Data retention in flash
cells is also affected, for example, by read operations and
write operations on neighboring cells, also referred to as read
disturb and program disturb respectively.

Using flash memory devices, for example, solid state drives
(SSD) to store data and replacing rotating magnetic storage
devices, for example, hard disks, is gaining rapid traction due
to the reduction in prices of multi-level cell flash memory
devices. The data to be stored in the solid state drives requires
mapping of logic storage blocks into flash blocks and pages.
Inmost cases, logical addresses have more writes than others.
Since the endurance of a page of a flash memory is limited,
data from pages that are not frequently used are moved to
accommodate pages that are more frequently used. This
mechanism for prolonging the service life of solid state drives
referred to as “wear leveling” creates write amplification, that
is, it increases the number of writes on multi-level cell flash
memory devices. Write amplification also occurs due to
thresholds associated with read disturb, and from garbage
collection to recover storage space from blocks of data that
are deleted.

Numerous solutions have been proposed to increase the
endurance of flash cells. There are two broad categories of
solutions to improve flash memory performance in SSD stor-
age. The first category involves circuit techniques that
improve the cells in flash memory devices and associated
read/write circuits. In addition, circuit techniques have been
proposed to limit the effect of disturb to neighboring cells
during a write operation of a block of data. The second cat-
egory involves signal processing steps that improve data
recovery and reduce the effect of cell interactions. Several
solutions for program disturb have been proposed which alter
the sequence of rows for block writes to flash memory
devices. These solutions reformat the data to be stored to

20

25

30

35

40

45

50

55

60

65

2

match the characteristics of flash memory device cells and
arrays. For example, one solution proposes reduction in pro-
gram disturb by reducing the number of cells that are not
programmed and altering the distribution of programmed
values. Another solution avoids program disturb by random-
izing the data to a flash memory resulting in fewer cells that
are not programmed, and changes in the distribution of pro-
grammed values when the data remains the same. However,
these solutions do not help in applications that need faster
programming. These solutions often fail to limit the number
of'write operations to fewer flash cells. Moreover, these solu-
tions often fail to reduce the number of erase operations on the
flash cells by performing erase operations on fewer flash
cells. Furthermore, a number of these solutions operate on the
original data block rather than reorganizing the data in the
data block to enable faster programming. This raises a sig-
nificant problem since with the probability of bit errors
increasing with the shrinking of flash cell sizes, the number of
bit fields required to accommodate error correction bits
increases. Conventional solutions for improving flash
memory performance often store the error correction bits in a
separate page and region of the flash memory. However, these
solutions are constrained by a predetermined number of bits
set for error correction, thereby allowing correction of the
same number of bit errors for all data, which does not allow
the flexibility of changing the number of error correction bits
in accordance with the data programmed in a page.

Hence, there is a long felt but unresolved need for a method
and system that manages storage of one or more data blocks
in a programmable data storage device by minimizing the
number of cells that go through program erase cycles for each
write, while minimizing the effect of program disturb. More-
over, there is a need for a method and a system that reduces the
number of columns in the programmable data storage device
that are to be written. Furthermore, there is a need for a
method and system that improves the recovery of a number of
bit errors. Furthermore, there is a need for a method and
system that reconfigures the data programmed into a page for
enabling a dynamic generation of a number of error correc-
tion bits for the page based on the reconfigured data, thereby
allowing a flexible configuration of error correction bits and
improved error correction.

SUMMARY OF THE INVENTION

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further disclosed in the
detailed description of the invention. This summary is not
intended to identify key or essential inventive concepts of the
claimed subject matter, nor is it intended for determining the
scope of the claimed subject matter.

The method and system disclosed herein addresses the
above stated need for managing storage of one or more data
blocks in a programmable data storage device by minimizing
the number of cells that go through program erase cycles for
each write, while minimizing the effect of program disturb.
The reduced write width allows hiding of columns with bad
cells, for example, by skipping bad columns. The reduction in
the number of bits can be used to speed up writes, that is, by
writing fewer columns in a sequence. The reduction in the
number of written columns ensures that the usage of the
columns can be recycled to improve future write operations
and reduce the impact of write disturb, that is, writing fewer
columns in any order.

Furthermore, the method and system disclosed herein
addresses the above stated need for improving the recovery of
a number of bit errors. The increased recovery of bit errors is

US 8,732,538 B2

3

achieved by addition of more error correction bits, that is,
error correcting code (ECC) bits to a composite data block.
Furthermore, the method and system disclosed herein address
the above stated need for reconfiguring the data programmed
into a page for enabling a dynamic generation of ECC bits for
the page, based on the reconfigured data, thereby allowing a
flexible configuration of the ECC bits and improved error
correction. The number of ECC bits can be calculated
dynamically based on the data. The method and system dis-
closed herein enables the transfer of bits in the columns
between different programmable data storage devices subse-
quent to processing of the data, which reduces the effort
required in each subsequent copy or wear-leveling write
operation. The method and system disclosed enables merging
of'two or more data blocks during a copy operation performed
between programmable data storage devices, thereby
improving the transfer bandwidth, improving wear-leveling
write operations for reducing write amplification in a pro-
grammable data storage device, etc.

The method and system for managing storage of one or
more data blocks in a programmable data storage device
disclosed herein provides a data storage controller compris-
ing at least one processor configured to control configuration
of the data blocks for storage of the data blocks in the pro-
grammable data storage device. The data storage controller
partitions each of the data blocks comprising multiple bits
into multiple sub data blocks based on one or more index
value descriptors. As used herein, the term “index value
descriptor” refers to a function that defines a sequence of
numbers that determines the order of arrangement of bits
extracted from a data block for generating new bit streams for
sub data blocks from the original bit stream of the data block.
Each of the sub data blocks comprises a distinct sequence of
a number of bits. Each of the sub data blocks is obtained by
extracting bits corresponding to the index value descriptors
stored in a lookup table. In an embodiment, the data storage
controller creates data redundancy by replicating the bits of
each of the data blocks in one or more of the sub data blocks
on partitioning the data blocks.

The data storage controller generates transition vectors
from each of the sub data blocks by applying one or more
transition functions on each of the sub data blocks. The tran-
sition vectors constitute a transition set for each of the sub
datablocks. Asused herein, the term “transition vector” refers
to a bit stream comprising bits in a sequence, with a low ratio
of one bits herein referred to as “ones” to zero bits herein
referred to as “zeros” or a low ratio of zeros to ones, obtained
from a bit stream of a sub data block by application of a
transition function. One or more of these bit streams have a
lowest possible ratio of ones to zeros or zeros to ones. Also, as
used herein, the term “transition function” refers to a revers-
ible mathematical transformation that modifies the bit stream
of the sub data block to obtain a bit stream with the desired
ratio of ones to zeros or zeros to ones. The data storage
controller performs one or more reversible mathematical
transformations on the distinct sequence of bits in each of the
sub data blocks for generating the transition vectors.

Inan embodiment, the data storage controller selects one of
the transition vectors in the transition set based on selection
criteria for encoding the selected transition vector. The selec-
tion criteria comprise, for example, one of a predetermined
ratio of ones to zeros, a lowest number of ones or zeros, a total
number of ones lesser than a predetermined threshold, etc.
The data storage controller encodes the selected transition
vector for each of the sub data blocks for obtaining a residual
sub data block comprising a reduced number of bits for each
of the sub data blocks, resulting in increased bit space for

20

25

30

35

40

45

50

55

60

65

4

accommodating parity bits and error correction bits. As used
herein, the term “bit space” refers to a number of vacant bit
positions in a data block. Also, as used herein, the term
“residual sub data block” refers to a sub data block obtained
by replacing the original bit stream in the selected transition
vector with the bit stream having the shortest encode length
for the selected transition vector. The data storage controller
replaces the bits of each of the transition vectors with the
encoded bits from each of the transition vectors to obtain
residual sub data blocks. The data storage controller, for
example, performs run length encoding (RLE) on the selected
transition vector for each of the sub data blocks for obtaining
the residual sub data block comprising a reduced number of
bits for each of the sub data blocks. In an embodiment, the
data storage controller generates distinct index value descrip-
tors for partitioning each of the sub data blocks for enabling
an optimal performance of encoding of the selected transition
vector for each of the sub data blocks.

The data storage controller generates a composite data
block by merging the residual sub data block of each of the
sub data blocks. As used herein, the term “composite data
block” refers to a data block obtained by combining one or
more residual sub data blocks. The composite data block
comprises increased bit space provided by each residual sub
datablock. The data storage controller generates and adds one
or more parity bits and error correction bits to the composite
data block for enabling alignment and error correction of the
composite data block. In an embodiment, the data storage
controller distributes the generated parity bits and error cor-
rection bits in the increased bit space of the composite data
block over the length of the composite data block. The distri-
bution of the parity bits and error correction bits through the
length of the composite data block, for example, results in a
reduction in burst errors. In another embodiment, the data
storage controller generates distinct index value descriptors
for distributing the error correction bits to one or more regions
in the programmable data storage device for reducing burst
errors. A “region” in a programmable data storage device, for
example, a flash memory device is, for example, a memory
column associated with the architecture of the programmable
data storage device. Furthermore, the data storage controller
inserts information on the index value descriptors and the
encoding ofthe transition vectors to the composite data block.
In an embodiment, the data storage controller replicates one
or more bits of the composite data block to one or more
memory locations in the data storage controller for creating
data redundancy. These bits comprise, for example, one or
more bits of the encoded transition vector in the composite
data block.

The composite data block is configurable for writing the
composite data block to one or more of multiple regions in the
programmable data storage device free from a disturbance
caused by a write operation to other regions in the program-
mable data storage device. As used herein, the term “distur-
bance” refers to a corruption of bits stored by a programmable
cell or an unintended programming of bits on a program-
mable cell in a particular region in the programmable data
storage device resulting from programming of a neighboring
region. In an embodiment, the data storage controller skips or
masks adjacent regions that are programmable on the pro-
grammable data storage device for performing the writing of
the composite data block to one or more regions in the pro-
grammable data storage device free from the disturbance
caused by the write operation to other regions in the program-
mable data storage device.

In an embodiment, the method and system disclosed herein
provides a weight assignment module external to the data

US 8,732,538 B2

5

storage controller for assigning weights to one or more
regions in the programmable data storage device for distinctly
identifying regions free from the disturbance. The assignment
of'weights is based on, for example, one or more of a location
of one or more regions in the programmable data storage
device, for example, columns of the flash memory, an orga-
nization of programmable cells in the regions, a number of
prior write operations performed on the regions, a number of
times of movement of bits associated with the regions in the
programmable data storage device, etc. The data storage con-
troller configures the composite data block for writing the
composite data block to one or more regions in the program-
mable data storage device by arranging bits of the composite
data block according to weights assigned to the regions in the
programmable data storage device. In an embodiment, the
data storage controller dynamically generates one or more
distinct index value descriptors based on weights assigned to
the regions in the programmable data storage device for col-
lating bits of the composite data block. The weights distinctly
identify one or more regions free from the disturbance. The
data storage controller manages storage of the data blocks in
the programmable data storage device by organizing the data
blocks for each write operation to specific regions in the
programmable data storage device and reducing disturbance
from writes to other regions in the programmable data storage
device without increasing storage size of the programmable
data storage device.

In an embodiment, the data storage controller copies the
composite data block written to one or more regions in the
programmable data storage device to another one or more
regions in the programmable data storage device. A decoder
in the data storage controller partially decodes the written
composite data block based on the dynamically generated
distinct index value descriptors. The data storage controller
then writes the partially decoded composite data block to the
other regions in the programmable data storage device. In an
embodiment, the data storage controller performs error cor-
rection of the partially decoded composite data block using
one or more of the error correction bits in the partially
decoded composite data block. The data storage controller
deletes the error correction bits of the partially decoded com-
posite data block on completion of error correction, prior to
writing the partially decoded composite data block to the
other regions in the programmable data storage device. In an
embodiment, the data storage controller generates and adds
one or more distinct error correction bits to the partially
decoded composite data block and writes the partially
decoded composite data block with the distinct error correc-
tion bits to the other regions in the programmable data storage
device based on weights assigned to the other regions in the
programmable data storage device.

In an embodiment, the data storage controller transmits the
partially decoded composite data block to one or more other
data storage controllers in communication with the data stor-
age controller via a network. The other data storage control-
lers write the received partially decoded composite data block
to one or more of multiple regions in their associated pro-
grammable data storage devices.

The method and system disclosed herein increases both
data retention and the number of times each page in a pro-
grammable data storage device can be programmed, without
adding to the cost of storage in the programmable data storage
device.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of the invention, is better understood when read in

20

25

30

35

40

45

50

55

60

65

6

conjunction with the appended drawings. For the purpose of
illustrating the invention, exemplary constructions of the
invention are shown in the drawings. However, the invention
is not limited to the specific methods and components dis-
closed herein.

FIG. 1 illustrates a method for managing storage of one or
more data blocks in a programmable data storage device.

FIGS. 2A-2B exemplarily illustrate a flowchart comprising
the steps for managing storage of one or more data blocks in
a programmable data storage device using a data storage
controller.

FIG. 3 exemplarily illustrates a data storage array with
floating gates in a programmable data storage device.

FIGS. 4-7 exemplarily illustrate an encode flow for data
blocks to be stored in the programmable data storage device
using the data storage controller.

FIG. 8 exemplarily illustrates a flowchart comprising the
steps for decoding a composite data block stored in the pro-
grammable data storage device to obtain the original data
block using the data storage controller.

FIG. 9 exemplarily illustrates an input data block to be
configured for storage in a programmable data storage device
using the method disclosed herein.

FIG. 10 exemplarily illustrates a data block obtained by
merging residual sub data blocks obtained by performing run
length encoding according to the method disclosed herein.

FIG. 11 exemplarily illustrates a system for managing stor-
age of one or more data blocks in a programmable data
storage device.

FIG. 12 exemplarily illustrates the architecture of the data
storage controller that manages the storage of one or more
data blocks in a programmable data storage device.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates a method for managing storage of one or
more data blocks in a programmable data storage device, for
example, a flash memory device. The method disclosed
herein provides 101 a data storage controller comprising at
least one processor configured to control configuration of one
or more data blocks for the storage of the data blocks in the
programmable data storage device. The data storage control-
ler is, for example, a microcontroller device such as a flash
memory controller configured to program the programmable
data storage device. In an embodiment, the data storage con-
troller resides inside the programmable data storage device to
support movement of pages. The data storage controller par-
titions 102 each of the data blocks comprising multiple bits
into multiple sub data blocks based on one or more index
value descriptors. Each of the sub data blocks comprises a
distinct sequence of a number of bits. As used herein, the term
“index value descriptor” refers to a function that defines a
sequence of numbers that determines the order of arrange-
ment of bits extracted from a data block for generating new bit
streams for the sub data blocks from the original bit stream of
the data block. Each of the numbers is referred to as an index.
Each sequence of numbers that determine the order of
arrangement of the bits for the sub data blocks is herein
referred to as an “index map”. A collection of index maps
defined by an index value descriptor is herein referred to as
“index map set”. In an embodiment, the data storage control-
ler is used on smaller partitions of data blocks in multiple
iterations to reduce the implementation gate count.

Each index value descriptor defines a particular pattern of
partitioning of the data block into sub data blocks. The index
value descriptor generates indices, for example, based on
prime numbers, consecutive numbers, pseudorandom binary

US 8,732,538 B2

7

sequence (PRBS) numbers based on tap points, etc. The indi-
ces determine the arrangement of bits from the data block for
each of the sub data blocks. Furthermore, in an example, the
index value descriptor does not specify all the indices. The
data storage controller constructs another sub data block from
all the unspecified indices. The index value descriptors reduce
the memory space required to store the index maps. The
sequence of numbers defined as part of an index map by an
index value descriptor is smaller than or equal to the number
of bits on which the index value descriptor is applied. The
index value descriptors are stored in a lookup table and estab-
lish a mapping between the arrangement of bits in the data
block and the resultant sub data blocks obtained by partition-
ing the data block. Each index map is referenced using a
sequence number of the index map in the index map set.
Furthermore, the data storage controller defines a set of index
value descriptors for a data block. The data storage controller
selects the index value descriptor based on a prior knowledge
about the data block, for example, by determining that the
data block is from a moving picture experts group-4 (MPEG-
4) file, or selects an arbitrary index value descriptor to initiate
partitioning of the data blocks.

In an embodiment, the data storage controller generates
index maps for subsequent iterations based on transforma-
tions associated with the data block and sub data blocks in a
previous iteration. For example, the data storage controller
determines that if transition vectors generated for corre-
sponding sub data blocks of a particular data block were
encoded in a previous iteration using run length encoding
(RLE) of base 2, then the number of sub data blocks is large
and consequently, the number of transition vectors in the
transition set for the next iteration is larger. The data storage
controller checks whether a particular combination of an
index map and a transition set comprising the transition vec-
tors enables optimal reorganization of a data block, for
example, a moving picture experts group-4 (MPEG-4) data
block. If the data storage controller determines that the
selected combination of an index map and a transition set
does not provide optimal reorganization of a data block, then
the data storage controller excludes the combination of that
index map and the transition set for subsequent iterations of
processing of that data block. In an example, the data storage
controller first executes a PRBS based index map for rear-
ranging the bits of the data block before initiating processing
on the MPEG-4 data block. The data storage controller gen-
erates a sequence of a number of bits in each of the sub data
blocks based on the index value descriptors. The data storage
controller constructs the sub data blocks such that the sub data
blocks are a subset of the original data block and the sequence
of bits is determined by the index map.

Consider an example where the data storage controller uses
an index map set of length 32, that is, the data storage con-
troller uses 32 index maps. The data storage controller gen-
erates a set of unique index maps defined, for example, as an
array of prime numbers by an index value descriptor. There-
fore, each of the index maps is associated with a correspond-
ing prime number. For an index map “i” in the index map set,
the data storage controller extracts a prime number “p” as:

p=prime_number][i]. Equation (1)

The prime numbers are stored sequentially in order in an
array, that is, as 2, 3, 5, 7, etc. Therefore, the data storage
controller determines prime_number[0] as 2, prime_number
[1] as 3, etc. The length of the array of prime numbers is
determined by the length of the index map set. Since the
length of the index map set is 32, the data storage controller
uses 32 prime numbers for generating 32 possible combina-

20

25

30

35

40

45

50

55

60

65

8

tions of partitioning the data block into sub blocks. In this
example, the data storage controller first partitions the data
block into two sub data blocks. The data storage controller
determines a first index map as:

Ho=p Equation (2)

For each of the subsequent index maps denoted by n, in the

index map set, the index map is obtained iteratively as fol-
lows:

for (i=1;1<N/2;i++)=n~(ng_ry+p)modulo N, Equation (3)

73233
1

where “1” denotes a particular index map, and N denotes
the total bit length of the data block. Therefore, each subse-
quent index map is based on the preceding index map trans-
lated by the corresponding prime number and modulo bound
by the total number of bits in the data block.

While traversing N/2 bits, the data storage controller tracks
the data block as an N bit array. In order to obtain the second
data block, the data storage controller generates the comple-
mentary N/2 array by complementing the bits from the array
generated by Equation (3). In an example, a sub data block
resulting from the application of an index value descriptor to
a 16 bit data block is exemplarily illustrated in FIG. 5. In
another example, the data storage controller uses a pseudo-
random binary sequence (PRBS) generator to define the
index value descriptors for generating the index maps. The
data storage controller generates a PRBS based index value
descriptor in order to arrange the bits of the data block more
uniformly when one bits herein referred to as “ones” and zero
bits herein referred to as “zeros™ in a sub data block appear
together. This, for example, allows the data storage controller
to perform run length encoding (RLE) encoding using a fixed
base on the sub data block, since the RLE encoding can be
performed optimally when the distribution of ones and zeros
is nearly uniform.

Furthermore, in an embodiment, the data storage controller
creates data redundancy by replicating the bits of each of the
data blocks in one or more of the sub data blocks, during
partitioning of each of the data blocks. This ensures that even
with the possibility of corruption of one of the sub data
blocks, the data storage controller can still retrieve the origi-
nal data block using the bits replicated in the second sub data
block. This allows the data storage controller to regenerate the
data block by retrieving the replicated bits. In an example, the
data storage controller replicates the bits describing the infor-
mation on the index value descriptor used for obtaining sub
data blocks, to each of the sub data blocks. Therefore, in this
example, the data storage controller identifies and selects the
bits that operate as a signature for partitioning the data block,
that is, the data storage controller selects the bits comprising
the information on the index value descriptors, for replication
in one or more sub data blocks. This enables the recovery of
the original data block in the event of corruption of a particu-
lar sub data block.

The data storage controller generates 103 transition vectors
from each of the sub data blocks by applying one or more
transition functions on each of the sub data blocks. The gen-
erated transition vectors constitute a transition set for each of
the sub data blocks. As used herein, the term “transition
vector” refers to a bit stream comprising bits in a sequence,
with a low ratio of ones to zeros or zeros to ones, obtained
from a bit stream of the sub data block by application of a
transition function. One or more of these bit streams have a
lowest possible ratio of ones to zeros or zeros to ones. Also, as
used herein, the term “transition function” refers to a revers-
ible mathematical transformation that modifies the bit stream
of the sub data block to obtain a bit stream with the desired

US 8,732,538 B2

9

ratio of ones to zeros or zeros to ones. Each transition vector
of'a transition set provides a different pattern of bits for a sub
data block. The data storage controller performs one or more
reversible mathematical transformations on the distinct
sequence of bits in each of the sub data blocks. The reversible
mathematical transformation is, for example, a toggle opera-
tion such as an exclusive OR (XOR) operation performed on
a sub data block. The subsequent transition vectors are gen-
erated, for example, by performing a sequence of shift opera-
tions and XOR operations on each of the sub data blocks.
Therefore, the transition set comprises a collection of toggle
vectors or an inverse of the toggle vectors, where a toggle
vector is generated by an XOR operation between the bits in
a particular sub data block and the bits of the sub data block
shifted by a distance parameter that defines the number of bits
to be shifted.

The data storage controller stores all the transition vectors
in a memory location that is referenced during selection of
one of the transition vectors for encoding of the selected
transition vector. In an example, the data storage controller
stores 8 transition sets in the memory location, where each
transition set comprises 16 transition vectors. The first tran-
sition set T, comprises a collection of transition vectors
defined by { Too0 Too2 Toos Tooa Toos Toos Too7 Toos Toos Toro
To11 Tors Tois Tora Tors}- The transition vectors are defined
as follows:

Tooo=B, where B is the sub data block. Equation (4)

The data storage controller iteratively generates each of the
subsequent transition vectors in the transition set using the
transition function below:

for (i=01;i<16;i++)=To;=To;_, XOR SHIFT_LEFT
(Toi-1)

Therefore, for each transition vector T, the data storage
controller performs an exclusive OR (XOR) operation
between a previous transition vector T,,, and a logically left
shifted version of the previous transition vector T, ; to gen-
erate the transition vector T,. Furthermore, for generating
each of the additional transition sets T, T,, T3, ..., T,, the
data storage controller uses the equation below:

Equation (5)

;=B XOR SHIFT_LEFT(B,j+1)

where XOR SHIFT_LEFT(B, j+1) is a transition function
used to shift a sub data block B by a bit distance “j+1”. This
generates the first transition vector in the transition set. The
data storage controller generates the next 15 transition vectors
in the transition set according to equation (5).

The data storage controller stores information on a particu-
lar transition set and the consecutive transition vectors in the
transition set, for example, in a memory location in the data
storage controller. Considering the above example, the data
storage controller uses the notation <3 bit group number><4
bit transition vector> where the “group number” refers to the
particular transition set to which a transition vector belongs.
Therefore, the total number of bits used to encode informa-
tion on the transition vector is, for example, (3+4) equal to 7
bits.

Inan embodiment, the data storage controller selects one of
the transition vectors in the transition set based on selection
criteria for encoding the selected transition vector. The selec-
tion criteria define a cost function for an optimal encoding of
adatablock. The selection criteria comprise, for example, one
of'a predetermined ratio of ones to zeros, a lowest number of
ones or zeros, a total number of ones lesser than a predeter-
mined threshold, etc. If the data storage controller determines
that a transition vector does not have the required ratio of ones

Equation (6)

20

25

30

35

40

45

50

55

60

65

10

to zeros, or zeros to ones, the data storage controller generates
new sub data blocks by merging the sub data blocks into
groups comprising sub data blocks that meet the selection
criteria and the sub data blocks that do not meet the selection
criteria. The data storage controller repeats the steps of gen-
erating and applying index value descriptors to those sub data
blocks that do not meet the selection criteria. In an example,
the data storage controller prunes the transition set by select-
ing transition vectors of the transition set based on an absolute
difference in the count of ones and zeros in each transition
vector. In another example, the data storage controller prunes
the transition set by selecting transition vectors of the transi-
tion set with a larger ratio of zeros to ones, and by comple-
menting the ratio of ones to zeros. Therefore, the data storage
controller considers all the transition vectors and selects the
most desirable pattern of bits to be representative of the sub
data block associated with the transition vector, which is used
in subsequent encoding steps.

The data storage controller encodes 104 one of the transi-
tion vectors in the transition set, that is, the selected transition
vector for each of the sub data blocks for obtaining a residual
sub data block comprising a reduced number of bits for each
of the sub data blocks, resulting in increased bit space for
accommodating parity bits and error correction bits. Also, as
used herein, the term “bit space” refers to a number of vacant
bit positions in a data block. The data storage controller
encodes the selected transition vector for each of the sub data
blocks, for example, by performing run length encoding
(RLE) on the selected transition vector for obtaining the
residual sub data block comprising the reduced number of
bits for each of the sub data blocks. As used herein, the term
“residual sub data block” refers to a sub data block obtained
by replacing the original data stream in the selected transition
vector with the bit stream having the shortest encode length
for the selected transition vector. The data storage controller
replaces the bits of each selected transition vector with the
encoded bits from the selected transition vector to obtain the
residual sub data block. That is, the data storage controller
creates the residual sub data block using the bit stream having
the shortest encode length obtained by encoding the selected
transition vector. The residual sub data block comprises the
bits obtained by performing run length encoding on the
selected transition vector, the identifiers for the selected index
map and the selected transition vector, etc. The residual sub
data block further comprises bits used to identify a transfor-
mation, for example, an iteration number that identifies a
particular iteration of processing.

In an embodiment, the data storage controller parses each
of'the transition vectors and compares the sequence of bits in
each of the transition vectors with predetermined bit patterns.
Each of the bit patterns are mapped to an associated encoding
string. Therefore, the data storage controller encodes
sequences of bits of the selected transition vector that match
the predetermined bit patterns according to the associated
encoding string, thereby compressing the transition vector
and increasing the bit space for obtaining the residual sub data
block with increased bit space. The encoding interval of the
run length encoding is configured, for example, based on the
required ratio of zeros to ones. In an example, the data storage
controller first verifies that a transition vector has a fewer
number of ones than zeros. The data storage controller per-
forms run length encoding by computing the number of zeros
between two ones. [f the data storage controller uses a base 2
run length encoding (RLE) then the encoding string “00”
corresponds to a scenario where there are no zeros between
two ones; the encoding string “01” corresponds to a scenario
where there is one zero between two ones; and the encoding

US 8,732,538 B2

11

string “10” corresponds to a scenario where there are two
zeros between two ones. The encoding string “11” corre-
sponds to a scenario where there are more than two zeros
between two ones in which case the data storage controller
analyzes the next two bits as well to determine the numbers of
zeros between two ones. When the data storage controller
uses base 3 RLE, the data storage controller uses 3 bits to
represent the number of zeros between two ones. The encod-
ing string “000” represents no zeros and the encoding string
“111” represents more than 6 zeros between two ones in
which case the data storage controller checks the next 3 bits as
well to determine the number of zeros between two ones.

In an embodiment, the data storage controller generates
distinct index value descriptors for partitioning each of the
sub data blocks for enabling an optimal performance of
encoding of one of the transition vectors, that is, the selected
transition vector for each of the sub data blocks. This step
improves the ratio of zeros to ones for some of the sub data
blocks. Furthermore, the data storage controller partitions the
sub data blocks to further reduce the number of bits on which
the data storage controller performs run length encoding
(RLE). This is useful, for example, when the data storage
controller needs to reduce the number of bits in the resulting
composite data block by only a few bits for a given iteration.
Furthermore, the data storage controller also performs parti-
tioning of the sub data blocks to improve the efficiency of
RLE, since the number of bits saved by further encoding the
transition vectors associated with the resulting sub data
blocks can be greater than encoding the transition vector
associated with the original sub data block.

In an embodiment, the data storage controller partitions all
the sub data blocks subsequent to generation of the transition
vectors using a set of distinct index value descriptors, gener-
ates transition vectors from each of the resulting sub data
blocks, and performs run length encoding (RLE) on one of the
generated transition vectors selected based on the selection
criteria. In an example, the data storage controller generates
an index map set comprising multiple index maps according
to a selected index value descriptor. The data storage control-
ler performs partitioning of the sub data blocks based on the
index maps in the index map set and generates transition
vectors from each of the resulting sub data blocks. The data
storage controller encodes one of the generated transition
vectors for each of the resulting sub data blocks using RLE for
obtaining the residual sub data block. The data storage con-
troller checks the increase in bit space achieved in each
residual sub data block using RLE. If the data storage con-
troller determines that there is no substantial increase in the
bit space when compared to the bit space in the original
transition vector, the data storage controller does not encode
information on the index map along with the encoding infor-
mation ofthe original transition vector, and discards the index
map used for partitioning the sub data blocks.

The data storage controller generates 105 a composite data
block by merging the residual sub data block of each of the
sub data blocks. As used herein, the term “composite data
block” refers to a data block obtained by combining one or
more residual sub data blocks. The composite data block
comprises the increased bit space provided by each residual
sub data block. The data storage controller generates and adds
one or more parity bits and error correction bits, for example,
error correcting code (ECC) bits to the composite data block
for enabling alignment and error correction of the composite
data block. Furthermore, the generation of the parity bits
helps maintain the integrity of the encoded words, and adds to
the integrity of the page data programmed based on the com-
posite data block in the programmable data storage device.

20

25

30

35

40

45

50

55

60

65

12

The number of parity bits and/or the error correcting code
(ECC) bits added to the composite data block depends on the
bit space available after encoding of the transition vectors
generated from the sub data blocks in multiple iterations, and
the column weights associated with a page to which the
composite data block needs to be written in the program-
mable data storage device. The number of ECC bits is also
adapted to match, for example, an expected error rate, a
required retention time for a particular page, etc.

The data storage controller inserts information on the
encoding of the selected index map, the selected transition
vector and the associated transition set, the RLE encoded
sequence, etc., to the composite data block. The data storage
controller appends, for example, information on a sequence
number of the index map in the index map set stored in a
memory location of the data storage controller, the index
value descriptor stored in the lookup table, the sequence
number of the selected transition vector stored in the memory
location, the sequence number of the transition function
stored in the lookup table, etc., to the composite data block.
This information enables decoding of the composite data
block for retrieving the original data block. The encoded
information can be included either as a prefix or a suffix to the
composite data block.

In an embodiment, the data storage controller distributes
the generated parity bits and error correction bits in the
increased bit space of the composite data block over the
length of the composite data block. The distribution of the
parity bits and the error correction bits through the length of
the composite data block results in a reduction in burst errors.
Consider an example where the composite data block is vul-
nerable to a burst error introduced by the cells of the program-
mable data storage device. Since the error correction bits are
distributed through the length of the composite data block, the
data storage controller recovers at least some of the error
correction bits that are unaffected by the burst error from the
composite data block. The data storage controller further uses
the recovered error correction bits to perform error correction
on the composite data block and recover the original data
block.

In an embodiment, the data storage controller replicates
one or more bits of the composite data block to one or more
memory locations in the data storage controller for creating
data redundancy. These bits comprise, for example, one or
more bits of the encoded transition vector in the composite
data block. In an embodiment, the data storage controller
adds parity bits, error correction bits, etc., to the composite
data block and replicates the composite data block along with
the parity bits, error correction bits, etc., in the following
iteration. The bits comprise a subset of the encoding bits in the
composite data block. In an example, the data storage con-
troller replicates bits needed for decoding the composite data
block to recover the original data block, for example, the bits
representing the sequence of operations performed by the
data storage controller to generate the composite data block.
The data redundancy ensures that the bits considered essen-
tial for recovering the original data block are accessible from
at least one memory location.

The data storage controller configures 106 the composite
data block for writing the composite data block to one or more
of multiple regions in the programmable data storage device
free from a disturbance caused, for example, by a write opera-
tion of the same composite data block or another data block to
other regions in the programmable data storage device. A
“region” in a programmable data storage device, for example,
a flash memory device, is, for example, a memory column
associated with the architecture of the programmable data

US 8,732,538 B2

13

storage device. Also, as used herein, the term “disturbance”
refers to a corruption of bits stored by a programmable cell or
anunintended programming of bits on a programmable cell in
a particular region in the programmable data storage device
resulting from programming of a neighboring region. Fur-
thermore, storing the composite data block on the program-
mable data storage device by the data storage controller
requires fewer cells to be programmed than storing the origi-
nal data block.

The configuration of the composite data block for writing
of the composite data block to one or more regions in the
programmable data storage device comprises arranging bits
of'the composite data block according to weights assigned to
the regions in the programmable data storage device. In an
embodiment, the method disclosed herein assigns weights to
one or more regions in the programmable data storage device
for distinctly identifying regions free from disturbance. The
method disclosed herein, for example, provides a weight
assignment module external to the data storage controller for
assigning the weights to the regions in the programmable data
storage device. The weight assignment module is, for
example, in electronic communication with the data storage
controller. In an embodiment, the weight assignment module
is a part of firmware of the data storage controller. In an
embodiment, the weight assignment module dynamically
generates and assigns the weights to one or more regions in
the programmable data storage device, for example, based on
one or more of a location of one or more regions in the
programmable data storage device, for example, columns of
the flash memory, an organization of programmable cells in
the regions, a number of prior write operations performed on
the regions, a number of times of movement of bits associated
with the regions in the programmable data storage device, etc.
Furthermore, the weight assignment module assigns the
weights, for example, based on memory specifications, num-
ber of reads/writes to a particular page, and the retention
versus latency requirement associated with a particular write
operation. Therefore, the weights distinctly identify one or
more regions free from disturbance. In an example, the
weight assignment module assigns adjacent columns with
mutually exclusive column weights. That is, for every column
assigned a weight of 1, the succeeding column is assigned a
weight of 0, and vice versa.

In an embodiment, the data storage controller distributes
the error correction bits, that is, the error correcting code
(ECC) bits to one or more regions in the programmable data
storage device based on distinct index value descriptors for
reducing burst errors. In an embodiment, the data storage
controller dynamically generates one or more distinct index
value descriptors based on weights assigned to the regions in
the programmable data storage device for collating bits of the
composite data block and generating, for example, a modified
composite data block. The data storage controller generates
the index value descriptors dynamically since the available bit
space changes based on each data block written to a page.
This means that the number of bits to be programmed to the
regions, that is, the columns of the programmable data storage
device is not fixed.

Furthermore, the data storage controller dynamically gen-
erates index value descriptors that define index maps accord-
ing to the weights assigned to one or more regions in the
programmable data storage device, for example, the column
weights. The index maps define the distribution of the error
correction bits and/or the parity bits through the regions in the
programmable data storage device according to the column
weights. The index value descriptors define index maps that
arrange the bits of the composite data block to ensure the

20

25

30

35

40

45

50

55

60

65

14

assignment of the error correcting code (ECC) bits and/or the
parity bits to columns with the largest weight, for example,
columns associated with a weight of one. The column weights
define the selected columns, for example, those columns that
are less vulnerable to disturbance, to be programmed for a
particular page. In an example, the data storage controller
assigns a larger weight to the selected columns. Therefore, if
the data storage controller determines that the number of bits
to be stored in the programmable data storage device is lower
than the number of columns assigned with larger weights,
then the data storage controller uses only the columns
assigned with larger weights for performing the write opera-
tion. If the data storage controller determines that the number
of columns assigned with larger weights is less than the
number of bits from the composite data block to be written to
the programmable data storage device, that is, the total num-
ber of bits obtained after adding ECC and/or parity bits to the
composite data block, the data storage controller assigns the
ECC and/or parity bits with a greater preference than the other
bits of the composite data block, for writing to the columns
with larger weights. When the number of columns assigned
with larger weights is greater than the number of bits in the
composite data block, the data storage controller toggles the
bits of the composite data block and writes the toggled bits to
the unfilled columns. Therefore, the larger column weights
instruct the data storage controller to program specific col-
umns of a particular page in the programmable data storage
device.

The data storage controller accesses the weights assigned
to each of the regions, for example, the weights assigned to
the columns for each row by the weight assignment module
for overcoming the disturbance caused by the write operation.
During the programming of the composite data block to a row
on the programmable data storage device, the data storage
controller analyzes the weights assigned to each of the col-
umns associated with that row and writes the bits of the
composite data block into the columns with a lower weight
less often. This reduces the effect of the disturbance caused by
the write operation to other regions in the programmable data
storage device.

The data storage controller aligns the composite data block
based on the weights assigned to the regions in the program-
mable data storage device, for example, based on the weights
assigned to the columns to be written. The data storage con-
troller generates and adds one or more parity bits to the
composite data block for storing the aligned composite data
block in the programmable data storage device. Furthermore,
the data storage controller fills the composite data block with
zeros to match the selected columns. For example, the data
storage controller fills the composite data block with zeros to
arrange the bits to match the columns assigned with larger
weights. That is, the data storage controller assigns a greater
preference to columns with larger weights for writing to the
programmable data storage device. If the data storage con-
troller determines that the composite data block has a lower
number of bits than the number of columns assigned with
larger weights, then the data storage controller sets additional
zeros to program the selected columns. The data storage
controller thereby manages storage of the data blocks in the
programmable data storage device by organizing the data
blocks for each write operation to particular regions in the
programmable data storage device and reducing disturbance
from write operations to other regions in the programmable
data storage device without increasing the storage size of the
programmable data storage device.

The data storage controller minimizes the number of data
blocks that go through program erase cycles for each write

US 8,732,538 B2

15

operation, while minimizing the effect of disturbance caused
during programming ofthe regions, for example, the columns
in the programmable data storage device, by a write operation
to other columns in the programmable data storage device.
The distribution of programmable cells is controlled across
multiple write operations to a page of the programmable data
storage device using column weights that change along with
the write count, that is, the number of write operations to a
location in the programmable data storage device, for the
composite data block. The weights assigned to a column of a
programmable cell are configured to cluster the program-
mable cells to specific locations of the page. To uniformly use
the available cells in a page, weights are moved after each
page is erased. In an embodiment, the weights assigned to a
column are modified based on the number of previous write
operations associated with the pages that are programmed
with the composite data block. The encoded data blocks are
aligned with the column weights after the iterations. The
alignment is used to calculate the number of additional parity
bits that are to be added to the composite data block.

In an embodiment, the data storage controller skips or
masks adjacent regions that are programmable on the pro-
grammable data storage device for writing the composite data
block to one or more regions in the programmable data stor-
age device free from disturbance caused by a write operation
to other regions in the programmable data storage device. For
example, the clustering effect around weighted columns can
be used to reduce the program time for a page by masking
regions. Moreover, skipping continuous columns of a page by
the data storage controller reduces the write time or program
time. Furthermore, in an embodiment that enables faster data
recovery, the data storage controller writes the error correct-
ing code (ECC) bits to separate locations equipped to hold
ECC bits to correct bit errors in a page of the programmable
data storage device. In an embodiment, the data storage con-
troller uses, for example, low density parity check (LDPC)
codes for error correction without additional bit space over-
head. Therefore, in the method disclosed herein, the location
and number of parity bits are determined in conjunction with
the operations of the data storage controller to reduce the
number of programmed cells and skew the programmed cells
resulting in an increase of the number of parity bits that are
included in the composite data block.

In an embodiment, the data storage controller copies the
composite data block written to one or more regions in the
programmable data storage device to other regions in the
programmable data storage device. A decode of the data
storage controller partially decodes the composite data block
written to one or more regions in the programmable data
storage device based on the dynamically generated distinct
index value descriptors. For example, when the composite
data block is moved between pages in the same program-
mable data storage device or between different program-
mable data storage devices, the decoder performs only a
partial decode of the written composite data block. In order to
generate the partially decoded composite data block, the data
storage controller reverses only some of the steps of encoding
of the composite data block. The data storage controller, for
example, retrieves the composite data block from a modified
composite data block, by reversing the step of generating the
index maps based on the column weights. The data storage
controller removes the column weights because different
pages have different column weights. In an embodiment, the
data storage controller accesses the column weights stored in
a lookup table for performing the partial decoding of the
composite data block. Therefore, the data storage controller
enables the copying of the composite data block across loca-

20

25

30

35

40

45

50

55

60

65

16

tions in the programmable data storage device without com-
pletely decoding the composite data block. The data storage
controller then writes the partially decoded composite data
block to other regions in the programmable data storage
device.

In an embodiment, the data storage controller performs
error correction of the partially decoded composite data block
using one or more of the error correction bits in the partially
decoded composite data block. The data storage controller
deletes one or more of the error correction bits of the partially
decoded composite data block on completion of the error
correction, prior to writing the partially decoded composite
data block to the other regions in the programmable data
storage device. This reduces the bandwidth required for copy-
ing the composite data block to other regions in the program-
mable data storage device. Furthermore, the data storage con-
troller provides separate error protection for every copy ofthe
composite data block to other regions in the programmable
data storage device, or transmission of the composite data
block to other data storage controllers that configure compos-
ite data blocks for writing to their associated programmable
data storage devices. The data storage controller generates
and adds one or more distinct error correction bits to the
partially decoded composite data block and writes the com-
posite data block with the distinct error correction bits to the
other regions in the programmable data storage device based
on weights assigned to the other regions in the programmable
data storage device.

In an embodiment, the data storage controller transmits the
partially decoded composite data block to one or more other
data storage controllers in communication with the data stor-
age controller via a network. The network is, for example, a
local area network, a communication network implementing
WiFi® of the Wireless Ethernet Compatibility Alliance, Inc.,
a Bluetooth® communication network, a wireless universal
serial bus (USB) communication network, etc. The other data
storage controllers write the received partially decoded com-
posite data block to one or more regions in their associated
programmable data storage devices. In an application of the
method disclosed herein, the composite data block can be
transmitted across different storage devices to reduce the
memory wear on the storage device to which the composite
data block is copied. The receiving programmable data stor-
age device can, for example, further iteratively process this
composite data block to reduce errors and improve error
recovery.

The data storage controller performs the partitioning of the
data blocks to sub data blocks, generation of the transition
vectors, and encoding of the selected transition vectors recur-
sively during each successful copy or write operation for each
of'the data blocks. The data storage controller performs mul-
tiple iterations of each of these steps after generating the
composite data block with the encoded bits and the associated
parity bits and error correction bits to create larger bit spaces
for alignment, error correction, etc.

The data storage controller decodes the composite data
block to obtain the original data block using the information
on the selected index maps, the selected transition vector, the
RLE encode sequence, etc. The data storage controller recov-
ers the errors in the data of the composite data block by
performing error correction using the error correcting code
(ECC) bits. The data storage controller performs a reversible
mathematical transformation on the transition vector to
retrieve the data of the original sub data block, expands each
of the sub data blocks based on the index maps, and merges
the sub data blocks to retrieve the original data block as
disclosed in the detailed description of FIG. 8.

US 8,732,538 B2

17

The data storage controller can be used in different ways
over the life cycle of the programmable data storage device.
When the programmable data storage device is new, the data
storage controller writes into most of the columns, that is, the
data storage controller cycles through a number of program-
mable cells to improve write speed. As the number of writes
to a page in the programmable data storage device increases,
the data storage controller adapts the programming of the
cells in order to write fewer bits, and to skew the redundant
bits inside a page. If one or more columns have developed an
error, the data storage controller excludes the columns from
the write operations without compromising data.

FIGS. 2A-2B exemplarily illustrate a flowchart comprising
the steps for managing storage of one or more data blocks in
a programmable data storage device using a data storage
controller. The data storage controller extracts 201 informa-
tion on the encoding of a prior data block. The data storage
controller analyzes this information to obtain the sequence
number of the most recently used index map, the individual
weights used for programming the memory columns, the
block number and location, etc., of the previous composite
data block. The data storage controller then accesses the
lookup table 206 to extract index value descriptors. The data
storage controller partitions 202 the page data into sub data
blocks based on one or more index value descriptors and
generates a sequence of bits based on the index value descrip-
tors. The data storage controller selects 203 a sub data block.
The data storage controller then generates 204 multiple tran-
sition vectors constituting a transition set by applying a tran-
sition function on the selected sub data block.

The data storage controller generates the transition vectors
based on a set of transition functions. In this example, the data
storage controller performs an exclusive OR (XOR) opera-
tion on each of the sub data blocks to obtain a respective first
transition vector. The data storage controller then generates
consecutive transition vectors for each of the sub data blocks,
for example, using equation (5) as disclosed in the detailed
description of FIG. 1. The data storage controller stores each
of the resultant transition vectors for each of the sub data
blocks in a memory location, thereby compiling a list of
possible bit sequences that can be encoded. The data storage
controller then accesses the memory location and selects 205
the transition vector with the lowest number of one bits,
herein referred to as “ones”. The data storage controller
checks 207 whether the number of ones in the selected tran-
sition vector is less than a predetermined threshold of a num-
ber of ones for a particular length of a data block. If the
number of ones in the selected transition vector is lesser than
the predetermined threshold, the data storage controller pro-
ceeds to encode 209 the selected transition vector to generate
an encoded bit stream. In this example, the data storage con-
troller performs RLE encoding on the selected transition vec-
tor. If the data storage controller determines that the number
of ones in the selected transition vector is greater than the
predetermined threshold, the data storage controller collates
bits from the selected sub data block based on distinct index
value descriptors. The data storage controller accesses the
lookup table 206 for distinct index value descriptors based on
which the data storage controller collates 208 bits from the
selected sub data block and performs further partitioning of
the selected sub data block. The data storage controller fur-
ther selects 203 one of the resulting sub data blocks and
generates 204 multiple transition vectors constituting a tran-
sition set by applying a transition function to the selected sub
datablock. Furthermore, the data storage controller continues
to reorganize each of the sub data blocks before every write
operation to the programmable data storage device for a pre-

20

25

30

35

40

45

50

55

60

65

18

determined number of iterations. The data storage controller
sets the number of iterations based on the latency tolerance of
the write operation. For example, since a wear leveling write
operation is configured with a tolerance to a greater latency,
the data storage controller sets a greater number of iterations
when using wear leveling.

After encoding each selected transition vector to generate
an encoded bit stream, the data storage controller checks 210
whether all the transition functions defined for a data block
have been applied by accessing the lookup table 206. If all the
transition functions have been applied to each sub data block,
the data storage controller collects all the encoded bit streams
generated from the encoding of the transition vectors. If all
the transition functions defined for a data block have not been
applied, the data storage controller applies the transition func-
tions accessed from the lookup table 206 to generate 204
transition vectors and repeats the steps 205,207, 208, and 209
for generating corresponding encoded bit streams.

The data storage controller considers the encoded bit
streams obtained for the transition functions and selects 211
the encoded bit stream with the shortest encode length. The
data storage controller stores 212 the distribution of ones and
zeros defining the encoded bit stream in the lookup table 206.
The data storage controller swaps 213 the bits of the corre-
sponding selected transition vector with the bits of the
encoded bit stream, thereby generating a residual sub data
block. Since the total number of bits in the encoded bit stream
is lesser than the total number of bits in the selected transition
vector, the bit space for accommodating parity bits and error
correction bits is increased. The data storage controller then
merges 214 the residual sub data block collected from the
particular sub data block into a larger data block. The larger
data block is stored in a memory location. The data storage
controller checks 215 whether the loop count for the number
of'sub data blocks has been reached. If the loop count for the
number of sub data blocks is not reached, then the data storage
controller proceeds to the step 203 and repeats the process
until the loop count for the number of sub data blocks is
reached. Ifthe loop count for the number of sub data blocks is
reached, the data storage controller retrieves the larger data
block from the memory location and inserts 216 information
on the index value descriptors and the transition functions to
the larger data block. The data storage controller generates
217 parity bits and/or error correction bits for the resultant
data block. The data storage controller distributes 218 the
generated parity bits and/or the error correction bits based on
the column weights through the length of the resultant data
block by accessing 215 the column weight lookup 219 table
from the block number and the loop count. The data storage
controller adds 220 zeros to match the desired columns, for
example, those columns in the programmable data storage
device which have been assigned weights but have not been
programmed, and generates 221 the output composite data
block.

FIG. 3 exemplarily illustrates a data storage array with
floating gates in a programmable data storage device. The
data storage array of the programmable data storage device
comprises pages having one or more rows and one or more
columns. The data storage controller disclosed in the detailed
description of FIG. 1 manages storage of one or more data
blocks in the rows and the columns of the data storage array in
the programmable data storage device.

FIGS. 4-7 exemplarily illustrate an encode flow for data
blocks to be stored in the programmable data storage device
using the data storage controller. A single page of data spans
all columns of a memory block as exemplarily illustrated in
FIG. 4. A page write populates the selected row. For a single

US 8,732,538 B2

19

level cell (SLC), every “0” requires a cell to be programmed,
while a “1” leaves the cell in its erased state. To limit the
number of programmed cells for an SL.C column, the data in
the cell is required to be transformed to hold mostly bits with
the value 1. For a multi-level cell, a group of bits with the
value 1 is required to leave a cell in an erased state. To limit the
cells programmed, bits with the value 1 are required in adja-
cent bits. The number of adjacent bits is the number of levels
in the multi-level cell (MLC) in the programmable data stor-
age device. To overcome the disturbance caused by a write
operation to other regions in the programmable data storage
device, the weight assignment module disclosed in the
detailed description of FIG. 1 assigns each of the columns
with a weight for each page. The weight assignment module
marks the columns in which no programmed cells are desired
with a value 0 or a low weight. The columns on which pro-
grammed cells are desired are marked with a value 1 or a large
weight. The column weights along with MLC level are the
inputs used to reformat the write data. As exemplarily illus-
trated in FIG. 4, the shaded portions represent the columns
carrying a higher weight. Furthermore, each of the columns is
assigned with different weights for different pages.

The data blocks are encoded as disclosed in the detailed
description of FIGS. 2A-2B. The encoded data block has
fewer programmed cells and the cells are skewed based on the
weights assigned to each column. Decoding the data blocks is
disclosed in the detailed description of FIG. 8. If'a data block
is being written back into the programmable data storage
device to change location, then the data block goes through
the encode flow again instead of the decode flow. The encode
flow uses an index map as exemplarily illustrated in FIG. 5 to
gather a subset of bits from the data block. The indices are
used to create a new bit stream for the sub data block from the
original bit stream of the data block. The shaded portions in
FIG. 5 represent the value 1. All the bits from the original bit
stream of the data block are mapped into one more sub data
blocks for allowing the data storage controller to recreate the
original bit stream. The index value descriptor defines an
index map with the sequence of numbers [7, 14, 5, 12, 3, 10,
1, 8] to partition the 16-bit data block. A resultant 8-bit sub
data block is exemplarily illustrated in FIG. 5.

The data storage controller uses the sequence of bits gen-
erated by the index map from a data block as an input to
generate a transition set comprising transition vectors for
each of the sub datablocks obtained from partitioning the data
block. One of the transition sets generated by the data storage
controller is exemplarily illustrated in FIG. 6. The transition
set comprises transition vectors which are reversible
sequences of bits that can be generated from the original bit
sequence. The data storage controller uses a number of tran-
sition functions to generate the transition vectors. The data
storage controller applies a transition function, for example, a
toggle 3 of the sequence of bits of a 48-bit sub data block, a
toggle of toggle sequence 33 of the sub data block, an inverse
toggle [of the original sequence, and an inverse of the inverse
toggle sequence [f on the 48-bit sub data block as exemplarily
illustrated in FIG. 6, to generate the transition vectors. The
transition function 3 is defined as a single step toggle vector
(3) for a bit sequence by,,_,, . . . b, as:

t5=bg

t=b, XOR b;,_, fori=1 ... (i-1), where XOR denotes an
exclusive OR operation between a bit b, and its preceding bit
b,,_,y in the bit sequence.

Consider another example where a transition function 85 is
generated by:

t5=bg

t,=b,

20

25

30

35

40

45

50

55

60

65

20

t,=b,

t7b, XOR b,_;, fori=3...({-1)

The transition functions defined above are used to generate
the first transition vectors, in each of the transition sets. The
rest of the transition vectors in each of the transition sets are
obtained by applying a particular transition function itera-
tively on each of the generated bit sequences starting from the
first transition vector for the transition set. For example, the
transition vector using the transition function 32 is obtained
by applying the transition function 3 twice to the bit sequence
of'the sub data block. Furthermore, the transition vector using
the transition function 333 is obtained by applying the tran-
sition function 3 thrice to the bit sequence of the sub data
block, the transition vector using the transition function 3333
(@*) is obtained by applying the transition function 3 four
times to the bit sequence of the sub data block, etc.

The inverse toggle (f) transition function is generated by:

ig=bg

i7b,XORb,_;, XORi,_,;, fori=1...({-1)

The transition vector using the transition function [(/%) is
obtained by applying [twice to the bit sequence.

In each iteration step, the index maps, transition sets, and
RLE sequences can change, as long as the change can be
inferred from the iteration number or the encoded data blocks
included with the page data. The step of encoding the data
block results in a reformatting of the data block as exemplar-
ily illustrated in FIG. 7.

FIG. 7 exemplarily illustrates a multi-level cell (MLC) map
of the data block before encoding and the MLLC map of the
data block after one pass of encoding. The shaded boxes in
FIG. 7 indicate the ML.C cells that are programmed. As exem-
plarily illustrated in FIG. 7, a larger number of cells associ-
ated with higher weighted columns are programmed after an
encode operation. The index value descriptor and the transi-
tion set comprising the transition vectors provide a partial
description of bit distribution on a page of the data block. A
lookup table is built to match the results of previous iterations
to the next most likely index value descriptor and transition
function. The data storage controller accesses the lookup
table to read an index value descriptor and generate index
maps, and a likely transition map comprising a set of transi-
tion functions to generate the transition vectors at the start of
the next iteration. Another lookup table is used to determine
the column weights for a page. The column weights depend
on the location of a block in the programmable data storage
device, the organization of programmable cells in that pro-
grammable data storage device, the number of prior writes to
that block, and the number of moves associated with the pages
in that block.

Furthermore, the data storage controller stores the
sequence of operations performed for generating the compos-
ite data block, in a separate memory location. Each step of
generating the composite data block is defined, for example,
by a unique sequence of bits. The data storage controller
stores the sequence of operations constituting the encoding of
the data block as a fixed size array comprising the sequence of
bits representing each of the individual operations. A decoder
of the data storage controller references the memory location
that stores the sequence of bits representing the steps used for
encoding the data block, in order to generate the original data
block. Therefore, at the end of an iteration comprising the
steps 101, 102, 103, 104, disclosed in the detailed description
of FIG. 1, the data storage controller determines whether the
increase in the bit space meets a preconfigured target for a
required increase in bit space. If the data storage determines
that the increase in bit space realized on performing the itera-
tion is sufficient, the data storage controller appends the

US 8,732,538 B2

21

sequence bits to the encoded data block, that is, the composite
data block. In an example, for a particular iteration, the data
storage controller skips or repeats one or more steps in the
sequence of operations for generating the composite data
block based on a desired increase in bit space. To ensure that
the decoder decodes the composite data block using the cor-
rect sequence of steps, the data storage controller encodes the
sequence of steps in the composite data block for the decoder.
For example, the data storage controller defines a sequence of
bits for representing the operations “skip the index map
before performing RLE”, “iterate twice on the index map
before performing RLE”, etc., and appends this sequence of
bits to the composite data block. In an embodiment, the data
storage controller generates additional parity bits and/or error
correction bits for the sequence of bits representing the
sequence of operations, for protecting the sequence of bits
and enabling decoding.

FIG. 8 exemplarily illustrates a flowchart comprising the
steps for decoding a composite data block stored in the pro-
grammable data storage device to obtain the original data
block using the data storage controller. The data storage con-
troller extracts 801 the encoded information from the com-
posite data block. The data storage controller uses the column
weight lookup table 805 from the block number and the write
count to retrieve the arrangement of bits in the composite data
block prior to encoding based on the column weights. The
data storage controller extracts the parity bits and the error
correction bits, by locating the position of the parity bits and
the error correction bits in association with the columns of the
programmable data storage device, based on the column
weights accessed from the column weight lookup table 805.
The data storage controller checks 802 the parity bits and the
error correction bits and recovers errors, for example, write
errors in the composite data block. The data storage controller
splits 803 the composite data block into residual sub data
blocks. The data storage controller decodes 804 each residual
sub data block based on a particular run length encoding
(RLE) encode sequence used for encoding the selected tran-
sition vector associated with the residual sub data block. The
data storage controller, for example, uses an RLE decoder to
decompress the encoded data in the residual sub data block.
The data storage controller expands 806 each decoded
residual sub data block based on the information extracted
from the lookup table 206 disclosed in the detailed descrip-
tion of FIG. 2, about the transition function selected during
encoding, and the index value descriptors used during parti-
tioning of the original data block to obtain each sub data
block. The data storage controller checks 807 whether all the
encode levels for a programmable cell are covered. That is,
the data storage controller checks if all the encoding infor-
mation associated with the iterations of partitioning, arrang-
ing, and encoding of the data block have been extracted for
decoding. If all the encode levels are covered, then the data
storage controller merges 808 the sub data blocks and
retrieves the original data block. If all the encode levels are
not covered, then the data storage controller continues to
extract 801 the encoded information of the composite data
block and repeats the steps 802, 803, 804, and 806 of decod-
ing until all the encode levels are covered.

A few examples described below further illustrate the
application of the method disclosed herein to a set of data
blocks.

Consider an example where a 512-bit data block is encoded
in a single iteration using the method disclosed herein. The
data block considered is represented, for example, in a hexa-
decimal representation as follows:

20

25

30

35

40

45

50

55

60

65

22
421100A0E12100807DDFF77DDFF77DDFF7FD00502A -
954AA552A9286400CCC300 CO00A61300800080D7005-
05555555555E5660010111111115100E0AA00200032

The data storage controller uses an index value descriptor
that generates index maps for partitioning the data block into
two 256-bit sub data blocks. The data storage controller
checks if the number of ones is lesser than the required num-
ber of ones in a data block. The data storage controller deter-
mines that each of the 256-bit sub data blocks needs to be
further partitioned into four 64-bit contiguous sub data blocks
to achieve the desired number of ones in the data block. The
data storage controller then applies a transition map compris-
ing the transition functions, for example, 3, 33, 333, 3323,
93000, 339333, 5350338, and 39355333(3" . . . 8%), that are
defined as disclosed in the detailed description of FIGS. 4-7,
on each of the 64-bit sub data blocks to obtain the transition
vectors. Furthermore, the data storage controller inserts a
single invert bit along with each transition vector to determine
whether the number of zeros is greater than the number of
ones or the number of ones is greater than the number of
zeros, for each transition vector. The data storage controller
determines the largest ratio of ones to zeros for each of the
64-bit sub data blocks and accordingly, selects the corre-
sponding transition vectors. The selected 64-bit transition
vectors are collected together and appear as:
421100A0E121008082200882200882202809011080C060-
3128169A1C04005100C000A 613008000808B01110000-
000001B3060111000000015100E0AA00200032

In this example, only four of the eight sub data blocks are
transformed. The changes in the sub data blocks subsequent
to the transformation is represented, for example, by the code
01101100, where a 1 denotes that a corresponding sub data
block of the eight sub data blocks has changed on applying a
transition function to the sub data block. The data storage
controller next determines the number of bits needed for
encoding the index maps based on the index value descrip-
tors. Considering 8 index maps, the total number of bits for
storing information on the index maps is log,(Number of
index maps=8)=3 bits, where log, indicates logarithm to the
base 2.

Considering the total number of bits required to encode the
transition vectors, the data storage controller needs log, (num-
ber of toggle attempts=8)+number of invert bits (=1)=4 bits.
The total number of 64-bit sub data blocks=8 (512/8). The
number of sub data blocks with a change in bit count is 4. The
number of bits for encoding the transition vector for each of
the transformed sub data blocks is 4; this results in a total of
16 bits considering all the transition vectors. Therefore, the
total number of bits for performing the encode operation is:
(3)+(8)+(16)=27.

Furthermore, the total number of bits flipped is 89. That is,
the difference between the total number of ones before the
encoding and after the encoding is 89. In this example, 27 bits
are used to reduce the number of ones in the original block by
89 bits.

The data storage controller next partitions the 512 bit data
block into four 128-bit sub data blocks. The data storage
controller applies index value descriptors to generate an index
map set of length 16 comprising 16 index maps. Each index
map splits the 128-bit data block into two 64-bit sub data
blocks as indicated below:

B3060111000000015100E0AA00200032—3611000150-
05080991 A0201000028000 (16, 9) corresponds to an index
map 7 in the index map set. The number of ones in the first
64-bit sub data block is 16 and the number of ones in the
second 64-bit sub data block is 9.

US 8,732,538 B2

23

C000A613008000808B01110000000001—C040000404-
0000000B20603100091009 (5, 14) corresponds to an index
map 8 in the index map set. The number of ones in the first
64-bit sub data block is 5, and the number of ones in the
second 64-bit sub data block is 14.

280901108000603128169A1C04005100—40A1241041-
29E9149A40020024801010 (19, 11) corresponds to an index
map 2 in the index map set. The number of ones in the first
64-bit sub data block is 19, and the number of ones in the
second 64-bit sub data block is 11.

421100A0E12100808220088220088220—100CC4089-
42942948500910000000000 (18, 6) corresponds to index
map 1 in the index map set. The number of ones in the first
64-bit sub data block is 18, and the number of ones in the
second 64-bit sub data block is 6.

In this example, the data storage controller performs a
partial run length encoding of the sub data blocks with the
lowest number of ones. The data storage controller selects
two sub data blocks with the lowest number of ones. The
64-bit sub data blocks with the lowest number of ones are, the
sub data block with six ones, that is, 850091 0000000000, and
the sub data block with five ones, that is,
C0400004040000000. The data storage controller performs
base 6 run length encoding on these sub data blocks, needing
66 bits to encode the 128 bits in the two sub data blocks. The
number of bits required for representing the RLE encoding
comprises 4 bits to specify the selected sub data blocks on
which the partial RLE encoding was performed, that is, an
encoding string “0101” to represent the encoding status of the
four 128 bit sub data blocks. The data storage controller uses
4 bits to represent the index map for each of the two sub data
blocks. For example, since the individual index maps entries
corresponding to the sub data blocks selected for RLE encod-
ing are 8 and 1 respectively, the index map is encoded as
“10000001”. Furthermore, the data storage controller needs 3
bits to represent the RLE base of 16. This results in a total of
15 bits for representing RLE encoding.

Therefore, the data storage controller obtains a residual bit
space generated from performing the encoding as: 128 (total
number of bits from two 64-bit sub data blocks)—66 (number
of bits obtained after compressing the two 64-bit sub data
blocks using RLE encoding)—15 (representation of the RLE
encode representation)—27 (number of bits for encoding the
original index map and the transition vector) equal to 20 bits.
The residual bit space is reduced by 2 bits to represent the
algorithm flow, that is, the number of steps used to achieve the
encoding. The data storage controller uses the additional 18
bits for inserting error correction code (ECC) bits and/or the
parity bits, or for bypassing bad regions, for example, col-
umns vulnerable to disturbance in the programmable data
storage device using the column weights.

FIG. 9 exemplarily illustrates an input data block to be
configured for storage in a programmable data storage device
using the method disclosed herein. The following example
describes the application of the method disclosed herein to a
4 kilobyte (32768 bits) data block collected from a portable
document format (PDF) file. The data storage controller gen-
erates an index map set with 32 index maps using an index
value descriptor. The data storage controller generates the 32
index maps by first traversing the 32768 bits of the data block.
The data storage controller then uses the equations (1)-(3)
disclosed in the detailed description of FIG. 1 to generate the
index maps. For each ofthe index maps 0-31 corresponding to
the 32 index maps in the index map set, the data storage
controller retrieves the index map using prime numbers as
disclosed in the detailed description of FIG. 1.

20

25

30

35

40

45

50

55

60

65

24

The data storage controller generates and stores the transi-
tion vectors of each transition set in a memory location of the
data storage controller using one or more transition functions
constituting a transition map. The data storage controller
generates 8 transition sets using the transition functions
300,9,958,4053s3,. The data storage controller further
expands each transition set by generating 15 consecutive
transition vectors using the transition functions denoted by 8*
through 3*° as disclosed in the detailed description of FIGS.
4-7, for each of the transition sets. The data storage controller
selects one of the transition vectors in each of the transition
sets based on the selection criteria as disclosed in the detailed
description of FIG. 1. The data storage controller encodes
information on each of the selected transition vectors using
the group number to represent the transition set and the index
of the transition vector in the memory location using the
notation: <3 bit group number>, <4 bit consecutive transition
vector>—"7 bits.

The data storage controller further partitions each of the
16384-bit sub data blocks generated by the preliminary index
map into 64-bit sub data blocks. The data storage controller
applies the transition function to each of the 64-bit sub data
blocks to generate transition vectors that constitute a transi-
tion set for each of the 64-bit sub data blocks. The data storage
controller then applies selection criteria to select a transition
vector from a corresponding transition set for each of the
64-bit sub data blocks. In this example, the selection criterion
is the lowest number of ones or zeros. Therefore, in each step,
the data storage controller counts the number of ones and
zeros and selects the transition vector with the lowest number
of ones or zeros.

Consider a 16384-bit sub data block transformed into a set
of transition vectors, for each of the 32 index maps. The data
storage controller selects a transition vector with the lowest
number of ones as exemplarily illustrated by the 32 element
index map set below:
[4466, 5361], [5021,
[4909, 5082], [5040,
[5096, 5255], [5113,
[5176, 5204], [5131,
[5203, 5239], [5210,
[5218, 5215], [5223, 5127], [5196, 5223], [5264, 5133],
[5236, 5085], [5286, 5177], [5268, 5230], [5292, 5189],
[5303, 5213], [5254, 5167], [5273, 4998], [5275, 4994]

For each element in the index map set, the first digit within
the bracket denotes the number of ones in the first 16384-bit
sub data block and the second digit within the bracket denotes
the number of ones in the second 16384-bit sub data block.
The data storage controller parses each of the 32 index maps
and selects the index map 4, that is [4682, 4835], which has
the least number of ones and zeros. The data storage control-
ler determines that the number of ones prior to conversion of
the first 16384-bit sub data block to a transition vectoris 7517,
and the number of ones subsequent to conversion of the first
16384-bit sub data block to a transition vector is 4682. The
data storage controller determines that the number of ones
prior to conversion of the second 16384-bit sub data block to
atransition vectoris 7641, and the number of ones subsequent
to conversion of the second 16384-bit sub data block to a
transition vector is 4835. The data storage controller performs
run length encoding on the transition vector of the 16384-bit
sub data block to obtain an encoded residual sub data block.

FIG. 10 exemplarily illustrates a data block obtained by
merging residual sub data blocks obtained by performing run
length encoding according to the method disclosed herein.
This data block has a length of 25652 bits. In order to regen-
erate the original data block, the data storage controller stores

4816],
5075],
5233],
5158],
5234], [5242,

(4832,
[4976
[5105
[5148

5086],
5152],
5072],
5039],
5237, [5242,

[4682,
[5026
[5168,
[5178

4835],
5057],
49791,
5195],
5234],

US 8,732,538 B2

25

all the parameters used to generate this block of data. The
parameters stored by the data storage controller for generat-
ing this block of data and the total number of bits that the data
storage controller stores to completely define each of the sub
data blocks comprises, for example, an index number of the
index map in the memory location comprising 5 bits to
accommodate 32 index maps, a transition vector for each of
the 64 bit blocks (512x7 bits), and a parameter specitying
whether the specific 64 bit sub data block has more ones (1
bitx512). This results in an overhead of (5+512x7+1x512)
equalto 4101 bits. Therefore, the increased bit space provided
by the data storage controller is (32768-25652-4101) equal
to 3015 bits that can be used to store the error correcting code
(ECC) bits and the parity bits.

In another example, the data storage controller uses a dif-
ferent selection criterion. The data storage controller deter-
mines the number of 64-bit sub data blocks that have fewer
than ¥4 of the total number of bits as ones, that is, lesser than
21 ones for 64 bits. A tally of the number of 64-bit sub data
blocks with a number of ones less than 21, for the 32 index
maps are:

[357/512, 339/512, 363/512, 348/512, 357/512, 337/512,
347/512,347/512,328/512,337/512,356/512,337/512,336/
512,358/512,347/512,344/512,328/512,336/512,337/512,
350/512,344/512,345/512,332/512,330/512,343/512, 340/
512,331/512,336/512,341/512,350/512,348/512,348/512]

For this selection criterion, the third index map has the
largest number of 64-bit sub data blocks with less than 21
ones. The data storage controller merges the two 16384-bit
sub data blocks into one 32768-bit data block and partitions
the 32768-bit data block into two sub data blocks. One sub
data block comprises all the 363 64-bit sub data blocks that
have less than 21 ones, and the other sub data block comprises
the rest of the 149 64-bit sub data blocks.

The data storage controller performs run length encoding
(RLE) on the 23232 bits (363 64-bit sub data blocks com-
bined together) of the newly generated first sub data block to
compress the total number of bits to 17938 bits. The data
storage controller performs the steps of applying the transi-
tion function and RLE encoding on the second 9536-bit sub
data block to save 2614 bits. The data storage controller uses
anadditional 512 bits to represent the masking bits for the 363
bits selected to generate the first sub data block. So the overall
overhead for this scheme of partitioning the data block is
4101+512+5=4618 bits. This results in an increase in bit
space equal to (((23232-17938)+(2614))-4618) equal to
3290 bits. The data storage controller can use the resulting
increased bit space of 3290 bits for the ECC bits and/or the
parity bits.

The example illustrated above depicts a single iteration of
the steps performed to encode a data block. However, the bits
that store information on the encoding along with the associ-
ated ECC and/or parity bits for the encoding operation are
appended to the block of data resulting from performance of
run length encoding (RLE) and the iteration is repeated to
create larger bit lengths for alignment or error correction.

Consider another example where the data storage control-
ler applies the method disclosed herein to data blocks of size
256 bits. The data storage controller uses a prime number
based index value descriptor as disclosed in the detailed
description of FIG. 1. The transition set comprises 16 con-
secutive transition vectors (3° . . . 3*%). The data storage
controller partitions the 256-bit data block into two 128-bit
sub data blocks based on a set of index value descriptors. The
data storage controller further partitions each 128-bit sub data
block into two 64-bit sub data blocks before applying the

20

25

30

35

40

45

50

55

60

65

26

transition functions to generate the transition vectors. The
input data block represented, for example, in a hexadecimal
notation is:
7FFS00COE7F3F97C3E9F00B0000028954AA552A9542-
A9500C045EC004041EDOO

On applying an index map set of length 32, and a set of
transition functions defined by the equations (4)-(6) disclosed
in the detailed description of FIG. 1, the data storage control-
ler obtains the following block of data:
8480C01400350022180000017CA401C8003192133C589-
3C42000070101096850

The number of ones in the first 128-bit sub data block for
the eighth index map before applying the transition function
is 39. The number of ones in the corresponding 128-bit tran-
sition vector after applying the transition function on the first
128-bit sub data block is 36. The number of ones in the second
128-bit sub data block for the eighth index map before apply-
ing the transition function is 62. The number of ones in the
corresponding 128-bit transition vector after applying the
transition function on the second 128-bit sub data block is 28.

The data storage controller then performs base 2 RLE
encoding on the 128-bit transition vectors to obtain residual
sub data blocks represented together as:
00000000000000003BC7D3F16FCCBFFD0099FO09FCCA-
3880D3A033BFC3FCE44D3 Considering the two 128-bit
residual sub data blocks together, after performing RLE, the
data storage controller compresses the block of data to 192
bits, thereby releasing a bit space of (256-192) equal to 64
bits.

The “encode cost”, that is, the total number of bits for

encoding the data block is:
5 bits (32 index maps)+4(number of sub data blocks)*4(num-
ber of transition vectors per sub data block) bits=21 bits. The
total number of bits saved is (64-21)=43 bits. Considering a
number of bits designated by the data storage controller for
representing the sequence of operations for generating the
composite data block as disclosed in the detailed description
of FIG. 7, the number of bits saved is about 30 bits.

The data storage controller uses another index map on the
resulting block of data before performing RLE. The data
storage controller uses a pseudorandom binary sequence
(PRBS) generator, with a PRBS tap of “0b11100001” to
generate the index map. The data storage controller outputs a
single block of data after the mapping, by using a one-to-one
mapping of index maps to the sub data blocks.

The resulting block of data is:
2C0101204A80C082FA278 A8E0043484018020292A502-
11404480080244144060. Furthermore, the application of
base 2 RLE encoding to this block of data results in com-
pressing the total number of bits of the block of data to 182
bits. This results in saving a number of bits equal to (256-
21-182) equal to 53 bits.

Considering another 256-bit data block:
B64700C8B900D8B66DDBB6EDOOCOCBBCCCCBBCC-
CCB3C9B00F4577FF5577FF 557. The data storage control-
ler uses a length 32 index map set to generate sub data blocks.
The data storage controller selects the third index map in the
index map set, and a set of transition functions defined by the
equations (4)-(6) disclosed in the detailed description of FIG.
1, to generate:
13C23B023883102155C498042D20010D006ES900205E1 -
330627600069F400010

The number of ones in the first 128-bit sub data block
before applying the transition function is 65. The number of
ones in the corresponding 128-bit transition vector after
applying the transition function to the first 128-bit sub data
block is 38. The number of ones in the second 128-bit sub data

US 8,732,538 B2

27
block before applying the transition function to the second
128-bit sub data block is 65. The number of ones in the
corresponding 128-bit transition vector after applying the
transition function to the second 128-bit sub data block is 38.

The data storage controller performs RLE on each of the
transition vectors resulting in the combined block of data
represented by:
00000000003803C12FODCECDS543 A0F3463F317C424A-
FB4038873812FC6005FF3. This results in compression of
the block of data to 214 bits.

The data storage controller performs a PRBS transforma-
tion to generate the index map set. The data storage controller
partitions the data block using the index maps from the gen-
erated index map set, rearranges the bit sequence, and applies
the transition functions defined by the equations (4)-(6) dis-
closed in the detailed description of FIG. 1 before performing
RLE as:

2150D2F804C2408071E08E4020131DC0640C444091 -
CCOE481202FA00C2201A42

After performing RLE encoding on this block of data, the
data storage controller generates the following block of data:
00000000000335319003E0EB3C301F08F3E3043CACFE-
EC22C2AEF4017C3CF18D

This results in a further compression of data to 210 bits. For
optimal RLE encoding, the data storage controller further
partitions each of the sub data blocks using distinct index
value descriptors, in this example, generated by a PRBS gen-
erator.

FIG. 11 exemplarily illustrates a system 1100 for manag-
ing storage of one or more data blocks in a programmable data
storage device. The system 1100 disclosed herein comprises
a data storage controller 1103 that interacts with a data stor-
age array 1102a located in a memory 1102 of a programmable
data storage device (not shown). In an embodiment, the data
storage controller 1103 is disposed in a data storage sub
system 1101 for managing storage and retrieval of the data
blocks in the programmable data storage device. In an
embodiment, the data storage controller 1103 communicates
with other data storage controllers 1103 via a network 1110.
The network 1110 is, for example, a local area network, a
communication network implementing Wi-Fi® of the Wire-
less Ethernet Compatibility Alliance, Inc., a Bluetooth®
communication network, a wireless universal serial bus
(USB) communication network, etc. In an embodiment, the
data storage array 1102a is embedded in the data storage
controller 1103. The data storage array 1102a comprises
pages having one or more rows and one or more columns. The
data storage array 1102a stores one or more data blocks in the
rows and the columns. Furthermore, the data storage array
1102a is programmed with a composite data block generated
by the data storage controller 1103. The data storage sub
system 1101 further comprises a weight assignment module
1109 for assigning weights to one or more columns of the data
storage array 1102aq.

The data storage controller 1103 controls the configuration
of'one or more data blocks for storage of the data blocks in the
programmable data storage device. The data storage control-
ler 1103 comprises a format engine 1104, a decoder 1105, a
processor 1106, a block write module 1108, and a lookup
table 1107. The format engine 1104 determines the format of
the composite data block to be written to one or more regions,
that is, columns in the programmable data storage device. The
format engine 1104 comprises a block partitioning module
1104a, a transition vector generation module 110454, an
encoding module 1104¢, a composite data block generation
module 11044, an error check module 1104¢, and a weight
matching module 1104f. The processor 1106 of the data stor-

20

25

30

35

40

45

50

55

60

65

28

age controller 1103 is configured to execute modules 1104a,
11045, 1104c¢, 1104d, 1104¢, 1104/, 1105, 1108, etc., of the
data storage controller 1103 as disclosed in the detailed
description of FIG. 12. In an embodiment, the data storage
controller 1103 comprises one or more processors 1106 for
executing the modules 1104a, 11045, 1104¢, 11044, 1104e,
11047, 1105, 1108, etc.

The block partitioning module 1104q partitions each of the
data blocks comprising multiple bits into multiple sub data
blocks based on one or more index value descriptors stored in
the lookup table 1107. Each of the sub data blocks comprises
a distinct sequence of a number of bits. In an embodiment, the
block partitioning module 11044 creates data redundancy by
replicating the bits of one or more data blocks in one or more
of the sub data blocks generated by partitioning the data
blocks.

The transition vector generation module 11045 generates
transition vectors from each of the sub data blocks by apply-
ing one or more transition functions on each of the sub data
blocks. The transition functions are stored in the lookup table
1107. The transition vectors constitute a transition set for each
of the sub data blocks. Each of the transition sets and the
associated transition vectors are stored in a memory location
in an input/output bufter 1201 of the data storage controller
1103 as exemplarily illustrated in FIG. 12. The transition
vector generation module 11045 performs one or more
reversible mathematical transformations on the distinct
sequence of bits in each of the sub data blocks during gen-
eration of the transition vectors from each of the sub data
blocks. In an embodiment, the transition vector generation
module 11045 selects one of the transition vectors in the
transition set based on selection criteria comprising, for
example, a predetermined ratio of ones to zeros, a lowest
number of ones or zeros, or a total number of ones lesser than
a predetermined threshold, for encoding the selected transi-
tion vector. The transition vector generation module 11045
accesses each of the transition sets stored in the memory
location of the input/output buffer 1201 exemplarily illus-
trated in FIG. 12 and compares each of the transition vectors
within a transition set for the required selection criteria, for
selecting a transition vector.

The encoding module 1104¢ encodes one of the transition
vectors in the transition set, that is, the selected transition
vector, for each of the sub data blocks for obtaining a residual
sub data block comprising a reduced number of bits for each
of the sub data blocks, resulting in increased bit space for
accommodating parity bits and error correction bits. The
encoding module 1104¢ performs, for example, run length
encoding on the selected transition vector for each of the sub
data blocks for obtaining the residual sub data block. The
encoded transition vectors are stored in the input/output
buffer 1201 exemplarily illustrated in FIG. 12. In an embodi-
ment, the block partitioning module 1104« generates distinct
index value descriptors for partitioning each of the sub data
blocks for enabling an optimal performance of the encoding
of the selected transition vector for each of the sub data
blocks.

The composite data block generation module 11044 gen-
erates a composite data block by merging the residual sub
data block of each of the sub data blocks and inserts informa-
tion on the encoded index value descriptor used in partition-
ing the sub data blocks, the encoded transition vector, etc.,
into the composite data block. The generated composite data
block comprises the increased bit space provided by each
residual sub data block. The composite data block is config-
urable for writing the composite data block to one or more
regions in the programmable data storage device free from a

US 8,732,538 B2

29

disturbance caused by a write operation to other regions in the
programmable data storage device. In an embodiment, the
composite data block generation module 11044 replicates
one or more bits of the composite data block to one or more
memory locations in the input/output bufter 1201 exemplar-
ily illustrated in FIG. 12, of the data storage controller 1103
for creating data redundancy. The bits of the composite data
block comprise one or more bits of the encoded transition
vector in the composite data block. In an embodiment, the
composite data block generation module 11044 in communi-
cation with the external weight assignment module 1109
arranges bits of the composite data block according to the
weights assigned to the regions in the programmable data
storage device, where the weights distinctly identify regions
free from disturbance.

The error check module 1104e generates and adds one or
more parity bits and error correction bits to the composite data
block for enabling alignment and error correction of the com-
posite data block stored in the programmable data storage
device. In an embodiment, the error check module 1104e
distributes the generated parity bits and error correction bits
in the increased bit space of the composite data block over a
length of the composite data block. In an embodiment, the
error check module 1104e also generates distinct index value
descriptors for distributing the generated error correction bits
to one or more regions in the programmable data storage
device for reducing burst errors. The error check module
1104e accesses the index value descriptors from the lookup
table 1107. The error check module 1104e distributes the
error correction bits to one or more columns in the program-
mable data storage device based on the weights assigned to
the columns by the weight assignment module 1109.

The weight assignment module 1109 is disposed external
to the data storage controller 1103. The weight assignment
module 1109 electronically communicates with the data stor-
age controller 1103. The weight assignment module 1109
assigns weights to one or more regions in the programmable
data storage device for distinctly identifying the regions free
from disturbance caused during a write operation of the com-
posite data block to one or more regions in the programmable
data storage device, by a write operation to other regions in
the programmable data storage device. The weight matching
module 1104f dynamically generates one or more distinct
index value descriptors based on weights assigned to one or
more regions in the programmable data storage device for
collating bits of the composite data block, where the weights
distinctly identify the regions free from disturbance.

The block write module 1108 writes the configured com-
posite data block to one or more regions in the programmable
data storage device free from a disturbance caused by a write
operation to other regions in the programmable data storage
device as disclosed in the detailed description of FIG. 1. The
block write module 1108 skips or masks adjacent regions that
are programmable on the programmable data storage device
for writing the composite data block to one or more regions in
the programmable data storage device free from the distur-
bance caused by a write operation to other regions in the
programmable data storage device. In an embodiment, the
block write module 1108 in communication with the decoder
1105 copies the composite data block written to one or more
regions in the programmable data storage device to one or
more other regions in the programmable data storage device.
The decoder 1105 partially decodes the written composite
data block based on one or more distinct index value descrip-
tors dynamically generated based on weights assigned to the
regions in the programmable data storage device. The block

20

25

30

35

40

45

50

55

60

65

30

write module 1108 writes the partially decoded composite
data block to the other regions in the programmable data
storage device.

In an embodiment, the error check module 1104e performs
error correction of the partially decoded composite data block
using one or more of the error correction bits in the partially
decoded composite data block and deletes the error correction
bits of the partially decoded composite data block on comple-
tion of the error correction, prior to writing of the partially
decoded composite data block by the block write module
1108 to other regions in the programmable data storage
device. The error check module 1104e generates and adds one
or more distinct error correction bits to the partially decoded
composite data block. The block write module 1108 writes
the partially decoded composite data block with the distinct
error correction bits to other regions in the programmable
data storage device based on weights assigned to the other
regions in the programmable data storage device. In an
embodiment, the block write module 1108 transmits the par-
tially decoded composite data block to one or more other data
storage controllers 1103 that are in communication with the
data storage controller 1103 via the network 1110. Each ofthe
other data storage controllers 1103 writes the transmitted
partially decoded composite data block to one or more
regions in their associated programmable data storage
devices. The decoder 1105 performs the inverse of each of the
steps of encoding, for example, performing RLE decoding to
obtain residual sub data blocks, expanding each of the
decoded sub data blocks based on index value descriptors,
etc., as disclosed in the detailed description of FIG. 8.

FIG. 12 exemplarily illustrates the architecture of the data
storage controller 1103 that manages the storage of one or
more data blocks in a programmable data storage device. The
data storage controller 1103 is, for example, a microcontrol-
ler device such as a flash memory controller configured to
program the programmable data storage device, for example,
a flash memory device. The data storage controller 1103
comprises an input/output buffer 1201, a not AND (NAND)
flash error control unit 1202, an error correcting code genera-
tor 1203, a physical layer 1204, and the processor 1106. The
NAND flash error control unit 1202, in communication with
the format engine 1104 exemplarily illustrated in FIG. 11,
controls configuration of one or more data blocks for storage
of the data blocks, for example, in a NAND flash memory
1102 of the programmable data storage device. The NAND
flash error control unit 1202 is configured to perform error
detection and correction along with error logging. The error
correcting code generator 1203 in communication with the
error check module 1104e adds error correcting code bits as
part of the stored data to increase the number of bit errors that
can berecovered. The physical layer 1204 provides timing for
control pins to support synchronous interfaces and a bypass
mode for standard asynchronous operation. The data storage
controller 1103 supports a flash memory interface that pro-
vides an open NAND flash interface (ONFi), toggle mode
support, and an asynchronous interface for enabling writing
of'a composite data block to one or more of multiple regions,
for example, in the NAND flash memory 1102 of the pro-
grammable data storage device. The data storage controller
1103 further supports a system interface compliant with serial
advanced technology attachment (SATA), serial attached
small computer system interface (SAS), peripheral compo-
nent interconnect express (PCIE), flat cable interface (FCI),
etc. The processor 1106 identifies the device type, issues
commands, executes program codes, stores the encode his-
tory, etc.

US 8,732,538 B2

31

The data storage controller 1103 stores the index value
descriptors, transition functions, cost functions, etc., in the
lookup table 1107 exemplarily illustrated in FIG. 11. The data
storage controller 1103 further stores the index maps, transi-
tion vectors, intermediate bit sequences, encoded bit
sequences, etc., in memory locations in the input/output
buffer 1201. Furthermore, the input/output buffer 1201 stores
instructions adapted to be executed by the processor 1106,
which causes the processor 1106 of the data storage controller
1103 to execute the modules 1104a, 11045, 1104¢, 11044,
1104e, 1104/, 1105, 1108, etc., of the data storage controller
1103. For example, the block partitioning module 11044, the
transition vector generation module 11045, the encoding
module 1104¢, the composite data block generation module
11044, the error check module 1104e, the weight matching
module 1104f; the block write module 1108, and the decoder
1105 of the data storage controller 1103 are stored in the
input/output buffer 1201 of the data storage controller 1103.
The input/output buffer 1201 of the data storage controller
1103 comprises volatile and/or non-volatile memory, for
example, an embedded NAND flash memory, one or more
read/write data buffers for storing the read data and write data,
etc.

The processor 1106 retrieves the instructions for executing
the modules, for example, 1104a, 11045, 1104¢, 11044,
1104e, 1104/, 1105, 1108, etc., of the data storage controller
1103. The instructions fetched by the processor 1106 from the
input/output buffer 1201 after being processed are decoded.
The instructions are placed in an instruction register in the
processor 1106. After processing and decoding, the processor
1106 executes the instructions. In an example, the block par-
titioning module 1104qa defines instructions for partitioning
each of the data blocks comprising multiple bits into multiple
sub data blocks based on one or more index value descriptors.
In an embodiment, the block partitioning module 1104a
defines instructions for creating data redundancy by replicat-
ing the bits of each of the data blocks in one or more sub data
blocks on partitioning each of the data blocks.

The transition vector generation module 11045 defines
instructions for generating transition vectors from each of the
sub data blocks by applying one or more transition functions
on each of the sub data blocks. The transition vector genera-
tion module 11045 defines instructions for performing one or
more reversible mathematical transformations on the distinct
sequence of bits in each of the sub data blocks during gen-
eration of the transition vectors from each of the sub data
blocks. In an embodiment, the transition vector generation
module 11045 defines instructions for selecting one of the
transition vectors in a transition set based on the selection
criteria for encoding of the selected transition vector. The
encoding module 1104c¢ defines instructions for encoding one
ofthe transition vectors in the transition set for each of the sub
data blocks, for example, by performing run length encoding
on the selected transition vector for each of the sub data
blocks for obtaining a residual sub data block comprising a
reduced number of bits for each of the sub data blocks, result-
ing in increased bit space for accommodating parity bits and
error correction bits. Furthermore, in an embodiment, the
block partitioning module 1104a defines instructions for gen-
erating distinct index value descriptors for partitioning each
of'the sub data blocks for enabling an optimal performance of
encoding of the selected transition vector for each of the sub
data blocks.

The composite data block generation module 11044
defines instructions for generating a composite data block by
merging the residual sub data block of each of the sub data
blocks. In an embodiment, the composite data block genera-

20

25

30

35

40

45

50

55

60

65

32

tion module 1104d defines instructions for configuring the
composite data block for writing the composite data block to
one or more regions in the programmable data storage device
free from a disturbance caused by a write operation to other
regions in the programmable data storage device. In an
embodiment, the composite data block generation module
11044 defines instructions for replicating one or more bits, for
example, one or more bits of the encoded transition vector, of
the composite data block to one or more memory locations in
the data storage controller 1103 for creating data redundancy.

The error check module 1104e defines instructions for
generating and adding parity bits and error correction bits to
the composite data block for enabling alignment and error
correction of the composite data block. Furthermore, the error
check module 1104¢ defines instructions for distributing the
generated parity bits and/or the error correction bits in the
increased bit space of the composite data block over a length
of the composite data block. In an embodiment, the error
check module 1104¢ defines instructions for generating dis-
tinct index value descriptors for distributing the generated
error correction bits to one or more regions in the program-
mable data storage device for reducing burst errors.

Furthermore, the weight matching module 1104 defines
instructions for dynamically generating one or more distinct
index value descriptors based on weights assigned to one or
more regions in the programmable data storage device by the
external weight assignment module 1109 for collating bits of
the composite data block.

The block write module 1108 defines instructions for writ-
ing the configured composite data block to one or more
regions in the programmable data storage device free from a
disturbance caused by a write operation to other regions in the
programmable data storage device. The block write module
1108 defines instructions for skipping or masking adjacent
regions that are programmable on the programmable data
storage device for writing the composite data block to one or
more regions in the programmable data storage device free
from disturbance caused by the write operation to other
regions in the programmable data storage device.

In an embodiment, the block write module 1108 defines
instructions for copying the composite data block written to
the regions in the programmable data storage device to one or
more other regions in the programmable data storage device.
The decoder 1105 defines instructions for partially decoding
the written composite data block based on one or more dis-
tinct index value descriptors dynamically generated based on
the weights assigned to the regions in the programmable data
storage device. The block write module 1108 defines instruc-
tions for writing the partially decoded composite data block
to other regions in the programmable data storage device
based on weights assigned to the other regions in the pro-
grammable data storage device.

In an embodiment, the error check module 1104e defines
instructions for performing error correction of the partially
decoded composite data block using one or more of the error
correction bits in the partially decoded composite data block
and deletes the error correction bits of the partially decoded
composite data block on completion of the error correction,
prior to writing of the partially decoded composite data block
by the block write module 1108 to the other regions in the
programmable data storage device. The error check module
1104e defines instructions for generating and adding one or
more distinct error correction bits to the partially decoded
composite data block. The block write module 1108 defines
instructions for writing the partially decoded composite data
block with the distinct error correction bits to other regions in
the programmable data storage device based on weights

US 8,732,538 B2

33

assigned to the other regions in the programmable data stor-
age device. In an embodiment, the block write module 1108
defines instructions for transmitting the partially decoded
composite data block to one or more other data storage con-
trollers 1103 that are in communication with the data storage
controller 1103 via the network 1110.

The processor 1106 of the data storage controller 1103
retrieves the instructions defined by the block partitioning
module 1104q, the transition vector generation module
11045, the encoding module 1104¢, the composite data block
generation module 11044, the error check module 1104e, the
weight matching module 1104f; the block write module 1108,
the decoder 1105, etc., and executes the instructions. At the
time of execution, the instructions stored in the input/output
buffer 1201 are analyzed by the processor 1106 to determine
the operations to be performed. The processor 1106 then
performs the specified operations. The operations comprise
arithmetic operations and logic operations.

Disclosed herein is also a computer program product com-
prising a non-transitory computer readable storage medium
which stores computer program codes comprising instruc-
tions executable by at least one processor 1106. As used
herein, the term “non-transitory computer readable storage
medium” refers to all computer readable media, for example,
non-volatile media such as optical disks or magnetic disks,
volatile media such as a register memory, a processor cache,
etc., and transmission media such as wires that constitute a
system bus coupled to the processor 1106, except for a tran-
sitory, propagating signal. The computer program product
disclosed herein comprises multiple computer program codes
for managing the storage of one or more data blocks in a
programmable data storage device. For example, the com-
puter program product disclosed herein comprises a first
computer program code for partitioning each of one or more
data blocks comprising multiple bits into multiple sub data
blocks based on one or more index value descriptors, where
each of the sub data blocks comprise a distinct sequence of a
number of bits; a second computer program code for gener-
ating transition vectors from each of the sub data blocks by
applying one or more transition functions on each of the sub
data blocks; a third computer program code for encoding one
ofthe transition vectors in the transition set for each of the sub
datablocks for obtaining a residual sub data block comprising
a reduced number of bits for each of the sub data blocks,
resulting in increased bit space for accommodating parity bits
and error correction bits; and a fourth computer program code
for generating a composite data block by merging the residual
sub data block of each of the sub data blocks, where the
composite data block comprises increased bit space provided
by each residual sub data block, and wherein the composite
data block is configurable for writing the composite data
block to one or more regions in the programmable data stor-
age device free from a disturbance caused by a write opera-
tion to other regions in the programmable data storage device.
The computer program product disclosed herein further com-
prises additional computer program codes for performing
additional steps that may be required and contemplated for
managing the storage of the data blocks in the programmable
data storage device.

The computer program codes comprising the computer
executable instructions are embodied on the non-transitory
computer readable storage medium. The processor 1106
retrieves these computer executable instructions and executes
them. When the computer executable instructions are
executed by the processor 1106, the computer executable
instructions cause the processor 1106 to perform the method
steps for managing the storage of the data blocks in the

20

25

30

35

40

45

50

55

60

65

34

programmable data storage device. In an embodiment, a
single piece of computer program code comprising computer
executable instructions performs one or more steps of the
method disclosed herein for managing the storage of one or
more data blocks in a programmable data storage device.

The data storage controller 1103 can be programmed using
a number of modes of programming. The data storage con-
troller 1103 is, for example, a standalone device programmed
using standard computer interfaces such as recommended
standard-232 (RS 232), universal serial bus USB2, USB3
interfaces, peripheral component interconnect (PCI) express
interface, etc. In another example, the data storage controller
1103 resides inside a solid state drive (SSD) controller where
the programming is accomplished through standard on-chip
interconnects, for example, an advanced microcontroller bus
architecture (AMBA) bus, an advanced extensible interface
(AXI) bus, etc.

The data storage controller 1103 reduces the number of
cells required to be programmed for storing a data block. The
data storage controller 1103 skews the programmed cells into
rows based on a page and column number to minimize the
effect of disturbance caused during a write operation to the
regions in the programmable data storage device by a write
operation to the neighboring regions in the programmable
data storage device, referred to herein as “program disturb”.
The data storage controller 1103 adds additional parity bits to
protect the bits representing the sequence of operations that
define the data transformation and to recover bit errors that
cannot be detected by the existing error correcting code
(ECC). The data storage controller 1103 encodes a data block
without increasing the block size in the programmable data
storage device. In an embodiment, the data storage controller
1103 supports all programmable data storage devices, for
example, NAND flash memory devices. The method and
system 1100 disclosed herein improves block format based
on encode history and protects the formatted block with par-
ity. The method and system 1100 disclosed herein improves
retention as part of a block rewrite, that is, every time the
encoded data passes through.

It will be readily apparent that the various methods and
algorithms disclosed herein may be implemented on com-
puter readable media appropriately programmed for general
purpose computers and computing devices. As used herein,
the term “computer readable media” refers to non-transitory
computer readable media that participate in providing data,
for example, instructions that may be read by a computer, a
processor or a like device. Non-transitory computer readable
media comprise all computer readable media, for example,
non-volatile media, volatile media, and transmission media,
except for a transitory, propagating signal. Non-volatile
media comprise, for example, optical disks or magnetic disks
and other persistent memory volatile media including a
dynamic random access memory (DRAM), which typically
constitutes a main memory. Volatile media comprise, for
example, a register memory, a processor cache, a random
access memory (RAM), etc. Transmission media comprise,
for example, coaxial cables, copper wire and fiber optics,
including wires that constitute a system bus coupled to a
processor. Common forms of computer readable media com-
prise, for example, a floppy disk, a flexible disk, a hard disk,
magnetic tape, any other magnetic medium, a compact disc-
read only memory (CD-ROM), a digital versatile disc (DVD),
any other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, a random access
memory (RAM), a programmable read only memory
(PROM), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only

US 8,732,538 B2

35

memory (EEPROM), a flash memory, any other memory chip
or cartridge, or any other medium from which a computer can
read. A “processor” refers to any one or more microproces-
sors, central processing unit (CPU) devices, computing
devices, microcontrollers, digital signal processors or like
devices. Typically, a processor receives instructions from a
memory or like device and executes those instructions,
thereby performing one or more processes defined by those
instructions. Further, programs that implement such methods
and algorithms may be stored and transmitted using a variety
of media, for example, the computer readable media in a
number of manners. In an embodiment, hard-wired circuitry
or custom hardware may be used in place of, or in combina-
tion with, software instructions for implementation of the
processes of various embodiments. Therefore, the embodi-
ments are not limited to any specific combination ofhardware
and software. In general, the computer program codes com-
prising computer executable instructions may be imple-
mented in any programming language. Some examples of
languages that can be used comprise C, C++, C#, Perl,
Python, or JAVA. The computer program codes or software
programs may be stored on or in one or more mediums as
object code. The computer program product disclosed herein
comprises computer executable instructions embodied in a
non-transitory computer readable storage medium, wherein
the computer program product comprises computer program
codes for implementing the processes of various embodi-
ments.

The present invention can be configured to work in a net-
work environment including a computer that is in communi-
cation with one or more devices via a communication net-
work. The computer may communicate with the devices
directly or indirectly, via a wired medium or a wireless
medium such as the Internet, a local area network (LAN), a
wide area network (WAN) or the Ethernet, token ring, or via
any appropriate communications means or combination of
communications means. Each of the devices may comprise
computers such as those based on the Intel® processors,
AMD® processors, UltraSPARC® processors, IBM® pro-
cessors, etc., that are adapted to communicate with the com-
puter. Any number and type of machines may be in commu-
nication with the computer.

The foregoing examples have been provided merely for the
purpose of explanation and are in no way to be construed as
limiting of the present invention disclosed herein. While the
invention has been described with reference to various
embodiments, it is understood that the words, which have
been used herein, are words of description and illustration,
rather than words of limitation. Further, although the inven-
tion has been described herein with reference to particular
means, materials, and embodiments, the invention is not
intended to be limited to the particulars disclosed herein;
rather, the invention extends to all functionally equivalent
structures, methods and uses, such as are within the scope of
the appended claims. Those skilled in the art, having the
benefit of the teachings of this specification, may affect
numerous modifications thereto and changes may be made
without departing from the scope and spirit of the invention in
its aspects.

I claim:
1. A method for managing storage of one or more data
blocks in a programmable data storage device, comprising:
providing a data storage controller comprising at least one
processor configured to control configuration of said one
or more data blocks for said storage of said one or more
data blocks in said programmable data storage device;

10

20

25

30

35

40

45

50

55

60

65

36

partitioning each of said one or more data blocks compris-
ing a plurality of bits into a plurality of sub data blocks
by said data storage controller based on one or more
index value descriptors, wherein each of said sub data
blocks comprises a distinct sequence of a number of said
bits;
generating transition vectors from each of said sub data
blocks by applying one or more transition functions on
said each of said sub data blocks by said data storage
controller, wherein said transition vectors constitute a
transition set for said each of said sub data blocks;

encoding one of said transition vectors in said transition set
for said each of said sub data blocks by said data storage
controller for obtaining a residual sub data block com-
prising a reduced number of said number of said bits for
said each of said sub data blocks, resulting in increased
bit space for accommodating parity bits and error cor-
rection bits; and

generating a composite data block by merging said residual

sub data block of said each of said sub data blocks by
said data storage controller, wherein said composite data
block comprises said increased bit space provided by
each said residual sub data block, and wherein said
composite data block is configurable for writing said
composite data block to one or more of a plurality of
regions in said programmable data storage device free
from a disturbance caused by a write operation to each of
another one or more of said regions in said program-
mable data storage device.

2. The method of claim 1, wherein said encoding of said
one of said transition vectors in said transition set for said
each of said sub data blocks comprises performing run length
encoding on said one of said transition vectors for said each of
said sub data blocks by said data storage controller for obtain-
ing said residual sub data block comprising said reduced
number of said number of said bits for said each of said sub
data blocks.

3. The method of claim 1, further comprising generating
and adding one or more of said parity bits and said error
correction bits to said composite data block by said data
storage controller for enabling alignment and error correction
of said composite data block.

4. The method of claim 3, wherein said addition of said one
or more of said parity bits and said error correction bits
comprises distributing said generated one or more of said
parity bits and said error correction bits in said increased bit
space of said composite data block over a length of said
composite data block by said data storage controller.

5. The method of claim 1, further comprising generating
distinct index value descriptors for distributing said error
correction bits to said one or more of said regions in said
programmable data storage device by said data storage con-
troller for reducing burst errors.

6. The method of claim 1, further comprising replicating
one or more bits of said composite data block to one or more
memory locations in said data storage controller for creating
data redundancy, wherein said one or more bits of said com-
posite data block comprise one or more bits of said encoded
one of said transition vectors in said composite data block.

7. The method of claim 1, further comprising generating
distinct index value descriptors for partitioning each of said
sub data blocks by said data storage controller for enabling an
optimal performance of said encoding of said one of said
transition vectors for said each of said sub data blocks.

8. The method of claim 1, wherein said generation of said
transition vectors from said each of said sub data blocks
comprises performing one or more reversible mathematical

US 8,732,538 B2

37

transformations on said distinct sequence of said number of
said bits in said each of said sub data blocks by said data
storage controller.

9. The method of claim 1, further comprising selecting said
one of said transition vectors in said transition set based on
selection criteria by said data storage controller for said
encoding of said selected one of said transition vectors.

10. The method of claim 9, wherein said selection criteria
comprise one of a predetermined ratio of one bits to zero bits,
a lowest number of one of one bits and zero bits, and a total
number of one bits lesser than a predetermined threshold.

11. The method of claim 1, further comprising assigning
weights to said one or more of said regions in said program-
mable data storage device for distinctly identifying said one
or more of said regions free from said disturbance.

12. The method of claim 11, wherein said assignment of
said weights to said one or more of said regions in said
programmable data storage device is based on one or more of
alocation of said one or more of said regions in said program-
mable data storage device, an organization of programmable
cells in said one or more of said regions, a number of prior
write operations performed on said one or more of said
regions, and a number of times of movement of bits associ-
ated with said one or more of said regions in said program-
mable data storage device.

13. The method of claim 1, wherein said configuration of
said composite data block for said writing of said composite
data block to said one or more of said regions in said pro-
grammable data storage device comprises dynamically gen-
erating one or more distinct index value descriptors based on
weights assigned to said one or more of said regions in said
programmable data storage device by said data storage con-
troller for collating bits of said composite data block.

14. The method of claim 13, further comprising copying
said composite data block written to said one or more of said
regions in said programmable data storage device to another
one or more of said regions in said programmable data storage
device by said data storage controller, wherein said copying
of said composite data block comprises:

partially decoding said written composite data block based

on said dynamically generated one or more distinct
index value descriptors; and

writing said partially decoded composite data block to said

another one or more of said regions in said program-
mable data storage device.

15. The method of claim 14, further comprising perform-
ing error correction of said partially decoded composite data
block by said data storage controller using one or more of'said
error correction bits in said partially decoded composite data
block and deleting said one or more of said error correction
bits of said partially decoded composite data block on
completion of said error correction by said data storage con-
troller, prior to said writing of said partially decoded compos-
ite data block to said another one or more of said regions in
said programmable data storage device.

16. The method of claim 15, further comprising generating
and adding one or more distinct error correction bits to said
partially decoded composite data block by said data storage
controller and performing said writing of said partially
decoded composite data block with said one or more distinct
error correction bits to said another one or more of said
regions in said programmable data storage device by said data
storage controller based on weights assigned to said another
one or more of said regions in said programmable data storage
device.

17. The method of claim 14, further comprising transmit-
ting said partially decoded composite data block to one or

20

25

30

35

40

45

50

55

60

65

38

more other data storage controllers in communication with
said data storage controller via a network for writing said
transmitted partially decoded composite data block to one or
more of a plurality of regions in another said programmable
data storage device associated with said each of said one or
more other data storage controllers.

18. The method of claim 1, further comprising one or more
of skipping and masking adjacent said regions that are pro-
grammable on said programmable data storage device by said
data storage controller for performing said writing of said
composite data block to said one or more of said regions in
said programmable data storage device free from said distur-
bance caused by said write operation to said each of said
another one or more of said regions in said programmable
data storage device.

19. The method of claim 1, further comprising creating
data redundancy by replicating said bits of said each of said
one or more data blocks in one or more of said sub data blocks
by said data storage controller on said partitioning of said
each of said one or more data blocks.

20. A system for managing storage of one or more data
blocks in a programmable data storage device, comprising:

a data storage controller that controls configuration of said

one or more data blocks for said storage of said one or
more data blocks in said programmable data storage
device, said data storage controller comprising at least
one processor configured to execute modules of said
data storage controller, said modules of said data storage
controller comprising:

a block partitioning module that partitions each of said
one or more data blocks comprising a plurality of bits
into a plurality of sub data blocks based on one or
more index value descriptors, wherein each of said
sub data blocks comprises a distinct sequence of a
number of said bits;

a transition vector generation module that generates
transition vectors from each of said sub data blocks by
applying one or more transition functions on said each
of said sub data blocks, wherein said transition vec-
tors constitute a transition set for said each of said sub
data blocks;

an encoding module that encodes one of said transition
vectors in said transition set for said each of said sub
data blocks for obtaining a residual sub data block
comprising a reduced number of said number of said
bits for said each of said sub data blocks, resulting in
increased bit space for accommodating parity bits and
error correction bits; and

acomposite data block generation module that generates
a composite data block by merging said residual sub
data block of said each of said sub data blocks,
wherein said composite data block comprises said
increased bit space provided by each said residual sub
data block, and wherein said composite data block is
configurable for writing said composite data block to
one or more of a plurality of regions in said program-
mable data storage device free from a disturbance
caused by a write operation to each of another one or
more of said regions in said programmable data stor-
age device.

21. The system of claim 20, wherein said block partitioning
module generates distinct index value descriptors for parti-
tioning each of said sub data blocks for enabling an optimal
performance of said encoding of said one of said transition
vectors for said each of said sub data blocks.

22. The system of claim 20, wherein said block partitioning
module creates data redundancy by replicating said bits of

US 8,732,538 B2

39

said each of said one or more data blocks in one or more of
said sub data blocks on said partitioning of said each of said
one or more data blocks.

23. The system of claim 20, wherein said encoding module
encodes said one of said transition vectors in said transition
set for said each of said sub data blocks by performing run
length encoding on said one of said transition vectors for said
each of said sub data blocks for obtaining said residual sub
datablock comprising said reduced number of said number of
said bits for said each of said sub data blocks.

24. The system of claim 20, wherein said modules of said
data storage controller further comprise an error check mod-
ule that generates and adds one or more of said parity bits and
said error correction bits to said composite data block for
enabling alignment and error correction of said composite
data block.

25. The system of claim 24, wherein said error check
module performs one or more of:

distributing said generated one or more of said parity bits

and said error correction bits in said increased bit space
of said composite data block over a length of said com-
posite data block; and

generating distinct index value descriptors for distributing

said generated one or more of'said error correction bits to
said one or more of said regions in said programmable
data storage device for reducing burst errors.

26. The system of claim 20, wherein said composite data
block generation module replicates one or more bits of said
composite data block to one or more memory locations in said
data storage controller for creating data redundancy, wherein
said one or more bits of said composite data block comprise
one or more bits of said encoded one of said transition vectors
in said composite data block.

27. The system of claim 20, wherein said transition vector
generation module performs one or more reversible math-
ematical transformations on said distinct sequence of said
number of said bits in said each of said sub data blocks during
said generation of said transition vectors from said each of
said sub data blocks.

28. The system of claim 20, wherein said transition vector
generation module selects said one of said transition vectors
in said transition set based on selection criteria for said encod-
ing of said selected one of said transition vectors, wherein
said selection criteria comprise one of a predetermined ratio
of one bits to zero bits, a lowest number of one of one bits and
zero bits, and a total number of one bits lesser than a prede-
termined threshold.

29. The system of claim 20, further comprising a weight
assignment module external to said data storage controller,
wherein said weight assignment module assigns weights to
said one or more of said regions in said programmable data
storage device for distinctly identifying said one or more of
said regions free from said disturbance.

30. The system of claim 20, wherein said modules of said
data storage controller further comprise a weight matching
module that dynamically generates one or more distinct index
value descriptors based on weights assigned to said one or
more of said regions in said programmable data storage
device for collating bits of said composite data block.

31. The system of claim 20, wherein said modules of said
data storage controller further comprise a block write module
that performs one or more of skipping and masking adjacent
said regions that are programmable on said programmable
data storage device for performing said writing of said com-
posite data block to said one or more of said regions in said
programmable data storage device free from said disturbance

20

25

30

35

40

45

50

55

60

65

40

caused by said write operation to said each of said another one
or more of said regions in said programmable data storage
device.

32. The system of claim 31, wherein said block write
module in communication with a decoder copies said com-
posite data block written to said one or more of said regions in
said programmable data storage device to another one or
more of said regions in said programmable data storage
device, wherein said decoder partially decodes said written
composite data block based on one or more distinct index
value descriptors dynamically generated based on weights
assigned to said one or more of said regions in said program-
mable data storage device, and wherein said block write mod-
ule writes said partially decoded composite data block to said
another one or more of said regions in said programmable
data storage device.

33. The system of claim 32, wherein said modules of said
data storage controller further comprise an error check mod-
ule that performs error correction of said partially decoded
composite data block using one or more of said error correc-
tion bits in said partially decoded composite data block and
deletes said one or more of said error correction bits of said
partially decoded composite data block on completion of said
error correction, prior to said writing of said partially decoded
composite data block by said block write module to said
another one or more of said regions in said programmable
data storage device.

34. The system of claim 33, wherein said error check
module generates and adds one or more distinct error correc-
tion bits to said partially decoded composite data block, and
wherein said block write module performs said writing of
said partially decoded composite data block with said one or
more distinct error correction bits to said another one or more
of said regions in said programmable data storage device
based on weights assigned to said another one or more of said
regions in said programmable data storage device.

35. The system of claim 32, wherein said block write
module transmits said partially decoded composite data block
to one or more other data storage controllers in communica-
tion with said data storage controller via a network, wherein
each of said one or more other data storage controllers writes
said transmitted partially decoded composite data block to
one or more of a plurality of regions in another said program-
mable data storage device associated with said each of said
one or more other data storage controllers.

36. A computer program product comprising a non-transi-
tory computer readable storage medium, said non-transitory
computer readable storage medium storing computer pro-
gram codes comprising instructions executable by at least one
processor, said computer program codes comprising:

a first computer program code for partitioning each of one
or more data blocks comprising a plurality of bits into a
plurality of sub data blocks based on one or more index
value descriptors, wherein each of said sub data blocks
comprises a distinct sequence of a number of said bits;

a second computer program code for generating transition
vectors from each of said sub data blocks by applying
one or more transition functions on said each of said sub
data blocks, wherein said transition vectors constitute a
transition set for said each of said sub data blocks;

a third computer program code for encoding one of said
transition vectors in said transition set for said each of
said sub data blocks for obtaining a residual sub data
block comprising a reduced number of said number of
said bits for said each of said sub data blocks, resulting
in increased bit space for accommodating parity bits and
error correction bits; and

US 8,732,538 B2
41

a fourth computer program code for generating a compos-
ite data block by merging said residual sub data block of
said each of said sub data blocks, wherein said compos-
ite data block comprises said increased bit space pro-
vided by each said residual sub data block, and wherein 5
said composite data block is configurable for writing
said composite data block to one or more of a plurality of
regions in said programmable data storage device free
from a disturbance caused by a write operation to each of
another one or more of said regions in said program- 10
mable data storage device.

#* #* #* #* #*

42

