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invention has parallel execution semantics. The compilation
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for (i = 0; 1 < MAX; i++)
{
for (j = 0; j < MRAX; j++)
{
val = CO0 * a[i+1][j+1]) + C1 * a[il[j+1] + C2*a[i+1l]1([3j]:
alil (3] = alil[3) - val;

FIGURE 4
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/* SAMPLE SOURCE CODE FOR LOOP FUSION */

for (i = 0; i1 < MAX; i++)
{
af[i+l] = b[i] + c[i];
}
for (j = 0; j < MAX; j++)
{
d[i} = ali]l*b[i];

FIGURE SA

/* RESULTANT FUSED LOOP IS BELOW*/

for (i = 0; i < MAX; i++)
{
afi+l] = bfi] + c[i]:

d[i] = a[i] * b[i];

FIGURE 5B
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/*EXAMPLE SOURCE CODE*/

for (i = 0; i < MAX; i++)
{
for (j = 0; j < MAX; j++)
{
val = CO * a[i+1]([j+1] + Cl * a[i]([j+1) + C2*al[i+l1l](j];
afi) (3] = alil[j]) - val;

FIGURE 6A

for (i = 0; i < MAX; i++)
{
a_0 = al[i+1](0};
for (j = 0; J < MAX; j++)
{
a_l

ali+1] [j+1]
val = CO * a 1 +Cl1 * afil[j+1] + C2*a_0;
alil[j) = al(i1[j} - val:;

a0=al;

FIGURE 6B
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/*EXAMPLE SOURCE CODE*/

for (i = 0; i < MAX; i++)
{
for (j = 0; Jj < MAX; j++)
{
val = CO * a[i+1][j+1] + Cl * a[il}[j+1] + C2*a[i+l1l][]];
afil(j) = alillj] - val;

FIGURE 7A

/*SOURCE CODE AFTER LOOP TILING*/

for (i = 0; i < MAX; i++)
{
for (j _tile = 0; j tile < MAX; j_tile += 32)
{
for (j = J tile; j < j_tile + 32; j++)
{
val = CO * a[i+1][j+1] + C1 * a[i][j+1]
+ C2*ali+1][3]:
alil{j] = alillj] - val;

FIGURE 7B
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/*SOURCE CODE AFTER INPUT/COMPUTE/OUTPUT LOOP CREATION*/

for (i = 0; i < MAX; i++)
{
for (j_tile = 0; j_tile < MAX; j_tile += 32)
{
for (j = j_tile; j < j_tile + 32; j++)
{
local _al[i+1]([j+1] = ali+1]([j+1];
local a[i][j+1] = alil(j+1];
local_ali+l] (3] = ali+1] (3]
local_alil[3] = alilljl;
}
for (j = j _tile; j < j_tile + 32; j++)
{

val = CO * local a[i+1][j+1] + Cl1 * local af[i][j+1]

+ C2*local_ali+l1][j];

local a[il[j] = local alil[j] - val;

}
for (j = j_tile; j < j_tile + 32; j++)
{

alil[j] = local_afill[jl:

FIGURE 8
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/*SOURCE CODE AFTER LOCAL ARRAY RENAMING*/

for (i = 0; i < MAX; i++)
{
for (j tile = 0; j tile < MAX; j_tile += 32)
{
for (j = j_tile; j < j_tile + 32; j++)
{
local a_1[j+1] = afi+l] [j+1];
local a[j+1]
local a 1[j]

1

ali] [j+1]1:

ali+1]1(31;
local alj]l = afil(3l:
}
for (J = j tile; j < j_tile + 32; j++)
{
val = CO * local a 1{j+1] + Cl * local_afj+l]
+ C2*local _a 1(j];
rename_ local a[j] = local _al[j] - val;
1
for (j = j_tile; j < j_tile + 32; j++)
{

alil[j) = rename_local_alj];

FIGURE 9
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/*SOURCE CODE AFTER MERGING DMA TRANSFERS*/

for (i = 0; i < MAX; i++)
{
for (j_tile = 0; j_tile < MAX; j tile += 32)
{
for (j = j_tile; j < j_tile + 33; j++)

local_a_1[j] ali+111[31]1;

for (j = j _tile; j < j_tile + 33; j++)

local_al[j] ali]l[31:
for (j = j tile; j < j_tile + 32; j++)
val = CO * local_a_1[j+1] + Cl * local_al[j+1]
+ C2*local a 1[j];
rename local a[j] = local _a[j] - wval;

for (j = j_tile; j < j_tile + 32; j++)

afil[j] = rename local al[jl:

FIGURE 10
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DMA Channels:

Number of channels: 3 (2 reads and 1 write)

RAM Banks:

Number of Banks: 3

RAM Bank 1: Size: 33 words

Holds: “local a_1” array

Number of ports: 2

Port 1: Write (For DMA to write “local_a 1> data)

Port 2: Read (For Compute Core to read “local_a 1" data)

RAM Bank 2: Size: 33 words

Holds: “local a” array

Number of ports: 2

Port 1: Write (For DMA to write “local_a” data)

Port 2: Read (For Compute Core to read “local_a” data)

RAM Bank 3: Size: 32 words

Holds: rename local a array

Number of ports: 2

Port 1: Read (For DMA to read “rename_local a” data)

Port 2: Read (For Compute Core to write “rename_local a” data)
Compute Core Ports:

Number of ports: 2

Port 1: Read-Write (To read “local_a 1 and write “ rename local a” data)
Port 2: Read (To read “local_a” data)

Compute Core — RAM Bank Connectivity:

Compute Core Port 1:

Connected to RAM Bank 1, port 2 (to read “local a 1 data)
Connected to RAM Bank 3, port 2 (to write “rename _local_a” data)
Compute Core Port 2:

Connected to RAM Bank 2, port 2 (to read “local_a” data)

FIGURE 11
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LOOP (num_iterations: MAX/32)

/* Comment: Corresponds to the outerloop */

DO_DMA (channel: 0, source: &(a[i+1][0]), sink: local_a_1, size: 33,
element_size: 4 bytes, address_mode: offset)

/* Comment: Corresponds to the statement in first input loop */
WAIT _DMA (channel:0)

DO_DMA (channel: 1, source: &(a[i][0]), sink: local_a, size: 33, element_size: 4
bytes, address _mode: offset)

/* Comment: Corresponds to the statement in second input loop */
WAIT_DMA (channel:1)

DO_COMPUTE (thread_id: 0, mode_id: 0)

/* Comment: Corresponds to the compute loop */
WAIT COMPUTE(thread_id:0, mode_id: 0)

DO_DMA (channel: 2, source: rename_local_a, sink: &(a[i][0]), size: 32,
element_size: 4 bytes, address_mode: offset)

/* Comment: corresponds to the statement in the output loop */

WAIT_DMA (channel: 2)
END_LOOP
SINT (message: “end of accelerator execution™)
/* Comment: Send Interrupt. Optional statement to send an interrupt to the processor */
END

/* Comment: A statement to indicate end of the program. */

FIGURE 12
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LOOP (num_iterations: MAX)
/* Comment: Corresponds to the outer-nest loop */
LOOP (num_iterations: MAX/32)
/* Comment: Corresponds to the outerloop */
DO_DMA (channel: 0, source: &(a[1][0]), sink: local_a 1, size: 33,
element_size: 4 bytes, address_mode: stride)
/* Comment: Corresponds to the statement in first input loop */
/* Note: this dma operates in stride mode */
WAIT_DMA (channel:0)
DO _DMA (channel: 1, source: &(a[0][0]), sink: local a, size: 33,
element_size: 4 bytes, address_mode: stride)
/* Comment: Corresponds to the statement in second input loop */
/* Note: this dma operates in stride mode */
WAIT _DMA (channel:1)
DO_COMPUTE (thread_id: 0, mode_id: 0)
/* Comment: Corresponds to the compute loop */
WAIT COMPUTE(thread_id:0, mode_id: 0)
DO_DMA (channel: 2, source: rename_local_a, sink: &(a[0][0]), size: 32,
element_ size: 4 bytes, address_mode: stride)
/* Comment: corresponds to the statement in the output loop */
/* Note: this dma operates in stride mode */
WAIT_DMA (channel: 2)
END_LOOP
END_LOOP
SINT (message: “end of accelerator execution™)
/* Comment: Send Interrupt. Optional statement to send an interrupt to the processor */
END

/* Comment: A statement to indicate end of the program. */

FIGURE 13
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LOOP (num _iterations: MAX/32)

/* Comment: Corresponds to the outerloop */

DO_DMA (channel: 0, source: &(a[i+1][0]), sink: local_a_1, size: 33,
element_size: 4 bytes, address_mode: offset)

/* Corresponds to the statement in first input loop */

DO_DMA (channel: 1, source: &(a[i][0]), sink: local_a, size: 33, element_size: 4
bytes, address_mode: offset)

/* Corresponds to the statement in second input loop */

WAIT DMA (channel:0, channel:1, channel:2)
/* This is the result of wait propagation. This statement causes the accelerator to

wait until channels 0, 1, and 2 become idle */

DO_COMPUTE (thread_id: 0, mode_id: 0)

/* Corresponds to the compute loop */
WAIT _COMPUTE(thread_id:0, mode_id: 0)

DO_DMA (channel: 2, source: rename _local_a, sink: &(a[i][0}), size: 32,
element_size: 4 bytes, address_mode: offset)
/* corresponds to the statement in the output loop */

END_LOOP

WAIT DMA (channel: 2)

/* This wait dma is generated as a result of wait propagation */
SINT (message: “end of accelerator execution™)

END

FIGURE 14
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/* Comment: Prologue Start */

DO_DMA (channel: 0, source: &(a[i+1][0]), sink: local_a_1, size: 33, element_size: 4
bytes, address_mode: offset)

/* Corresponds to filling up the first buffer for local_a_1 */

DO_DMA (channel: 1, source: &(a[i][0]), sink: local_a, size: 33, element_size: 4 bytes,
address_mode: offset)

/* Corresponds to filling up the first buffer for local_a */

WAIT_DMA (channel:0, channel:1, channel:2)

SWITCH_BUFFER (local_a, local_a_1)

/* Please refer to the explanation below */

/* Comment: Prologue End */
LOOP (num_iterations: MAX/32 - 1)
/* The number of iterations has changed because some of the operations are now
performed outside the loop */

DO_DMA (channel: 0, source: &(a[i+1][0]), sink: local_a_1, size: 33,
element_size: 4 bytes, address_mode: offset)

/* Corresponds to filling up the buffer for the next set of data */

DO_DMA (channel: 1, source: &(a[i][0]), sink: local_a, size: 33, element_size: 4
bytes, address_mode: offset)

/* Corresponds to filling up the buffer for the next set of data */

DO_COMPUTE (thread_id: 0, mode_id: 0)
/* Compute operates on the first buffer, while DMA fills up the other buffer */

WAIT_COMPUTE(thread_id:0, mode_id: 0)

WAIT_DMA (channel:0, channel:1, channel:2)

FIGURE 15A
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/* The above two statements guarantee that the accelerator waits until the current

DMA and Compute activities are completed */

SWITCH_BUFFER (local_a, local_a_1, rename_local_a)

/* After the activities are done, switch the buffers for all the local arrays. */

DO_DMA (channel: 2, source: rename_local_a, sink: &(a[i][0]), size: 32,
element_size: 4 bytes, address_mode: offset)

/* corresponds to emptying the buffer of the computed set of data */
END_LOOP

/* Comment: Epilogue Start */
WAIT_DMA (channel: 2)
SWITCH_BUFFER (rename_local_a)

DO_COMPUTE (thread_id: 0, mode_id: 0)

/* Compute operates on the remaining buffer filled by the previous DMAs */

DO_DMA (channel: 2, source: rename_local_a, sink: &(a[i][0]), size: 32, element_size: 4
bytes, address_mode: offset)

/* corresponds to emptying the final buffer of the computed set of data */
/* Comment: Epilogue End */

WAIT_DMA (channel: 2)

/* This wait dma is generated as a result of wait propagation */

SINT (message: “end of accelerator execution”)

END

FIGURE 15B
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Store functions:

void store_into_acc(unsigned char value, void *address)

{ *(unsigned char *)address = value;

\}loid store_into_acc(unsigned short value, void *address)
{ *(unsigned short *)address = value;

Eloid store_into_acc(unsigned int value, void *address)

{ *(unsigned int *)address = value;

Efoid store_into_acc(float value, void *address)

: *(float *)address = value;

void store_into_acc(double value, void *address)

*(double *)address = value;
}

Load functions:

void load_from_acc(unsigned char *value, void *address)

{

}
void load from_acc(unsigned short *value, void *address)

*value = *(unsigned char *)address;

*value = *(unsigned short *)address;

void load from_acc(unsigned int *value, void *address)
*value = *(unsigned int *)address;

\{/oid load_from_acc(float *value, void *address)

*value = *(float *)address;

void load_from_acc(double *value, void *address)

{
}

*value = *(double *)address;

FIGURE 16
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LOW-LEVEL ACCESS FUNCTIONS:
LOAD AND STORE FUNCTIONS
INTERRUPT HANDLING FUNCTIONS

\_‘
~1
—]
-

CONTROL PROGRAM FUNCTIONS:
BOOTSTRAP FUNCTIONS
RUN-TIME PATCHING FUNCTIONS

s

DATA-COHERENCY FUNCTIONS:
CACHE-LINE INVALIDATE FUNCTIONS

K_
~J)
=

TOP-LEVEL ACCELERATOR FUNCTIONS
DEVICE DRIVERS FOR EACH
SELECTED LOOP/FUNCTION
DEBUGGING AND MONITORING FUNCTIONS

N

FIGURE 17
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1
COMPILER METHOD FOR EXTRACTING
AND ACCELERATOR TEMPLATE PROGRAM

FIELD OF THE INVENTION

The present invention relates in general to a compiler
method and more particularly to a compiler method for
extracting an accelerator template program.

BACKGROUND OF THE INVENTION

The present invention relates to the generation of a control
program for a hardware accelerator from an application
source code in any processor-based system, using a novel
compilation method. This invention describes a method for
automatically generating the program of the controller for an
accelerator starting from an application source code, i.e., a
sequential high-level language description of the application.
The compilation method disclosed improves the performance
of'the accelerator by parallelising the operations of the accel-
erator.

Processor-based systems using multiple accelerators are
designed to perform tasks such as mathematical calculation,
signal processing, etc., in a rapid and cost efficient manner.
Processor-based systems typically have a large software com-
ponent that can be easily changed or modified, even after the
system has been built. Also, these software components do
not need significant hardware resources other than additional
memory, as they run on the existing processors. To control
software development costs, it is necessary to write the appli-
cation using high-level languages such as C/C++, Java, etc.,
because writing in assembly language is prohibitively expen-
sive both in terms of time and money. Applications written in
high-level languages also have the advantage of being por-
table across different processors.

The disadvantage of using software components in proces-
sor-based systems includes reduced performance and
increased power consumption. Contemporary embedded sys-
tems are rapidly increasing in complexity in terms of the
functionality provided. Further, due to market demand, such
systems are expected to provide superior performance and
power efficiency at a lower cost. Moving more functionality
to software may not meet the performance and power goals of
the system. Hardware accelerators that perform specific com-
putation intensive tasks of the application can be added to the
system to provide the required performance boost. Adding
such accelerators also reduces the overall power requirement
of the system.

Application specific hardware accelerators suffer from the
disadvantage of being relatively fixed, i.e., inflexible, and
require long design and development cycles. To incorporate
flexibility in the processor based system, the hardware accel-
erators can be built with a limited amount of programmabil-
ity. This programmability allows the use of the same accel-
erator to perform different tasks, and also for modification of
the functionality after the system has been built. Further, to
avoid long design time, an automatic approach that can gen-
erate the application specific programmable accelerator and
the control program that executes on the accelerator is
needed.

The invention applies parallelisation techniques to
improve the performance of the accelerator.

By way of example, this invention describes the compila-
tion method using the C software language as the high-level
language. However, the compilation method is generic and is
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2

applicable to an application written in other high-level lan-
guages such as C++, Java, etc.

SUMMARY OF THE INVENTION

This invention describes a compilation method of extract-
ing and implementing an accelerator control program from an
application source code in a processor based system. The
application source code comprises arrays and loops. The
input application source code is sequential, with loop, branch
and call control structures, while the generated output of this
invention has parallel execution semantics. The compilation
method comprises the step of performing loop nest analysis,
transformations and backend processes. The step of loop nest
analysis consists of dependence analysis and pointer analysis.
Dependence analysis determines the conflicts between the
various references to arrays in the loop, and pointer analysis
determines if two pointer references in a loop are in conflict.
Transformations convert the loops from their original sequen-
tial execution semantics to parallel execution semantics. The
back-end process determines the parameters and memory
map of the accelerator and the hardware dependent software.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the architecture of a processor-based
system.

FIG. 2 illustrates the input and output diagram for the
partitioning process.

FIG. 3 illustrates the processes involved in extraction of an
accelerator control program from an application source code.

FIG. 4 illustrates a sample application source code on
which the process of dependency analysis will be conducted.

FIG. 5A illustrates the sample application source code on
which the process of loop fusion will be applied.

FIG. 5B illustrates the resultant fused loop after the appli-
cation of the loop fusion process on the sample application
source code illustrated in FIG. 5A.

FIG. 6A illustrates an example of an application source
code on which the process of scalar replacement will be
applied.

FIG. 6B illustrates the application source code after the
application of the scalar replacement process on the example
application source code illustrated in FIG. 6A.

FIG. 7A illustrates an example an application source code
on which the process of loop tiling will be applied.

FIG. 7B illustrates the resultant example application
source code after the process of loop tiling is applied on the
example application source code illustrated in FIG. 7A.

FIG. 8 illustrates the resultant example application source
code after the process of input-compute-output loop creation
is applied on the application source code illustrated in FIG.
7B.

FIG. 9 illustrates the resultant application source code after
the application of the local array renaming and merging direct
memory access (DMA) processes on the example application
source code illustrated in FIG. 8.

FIG. 10 illustrates the resultant application source code
after the application of the merging DMA transfer process on
the application source code illustrated in FIG. 9.

FIG. 11 illustrates the accelerator parameters as deter-
mined by the application of the algorithm that assigns com-
pute core ports and connects them to the previously deter-
mined random access memory. (RAM) bank ports, when
applied to the application source code described in FIG. 10.
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FIG. 12 illustrates the application of the sequential control
program generation rules on the application source code illus-
trated in FIG. 8.

FIG. 13 illustrates the application of the control program
generation rules where the outer-nest loop is also selected for
hardware acceleration.

FIG. 14 illustrates the control program derived after apply-
ing the wait propagation process to the sequential control
program generated.

FIGS. 15A and 15B illustrate the control program derived
after performing double buffering.

FIG. 16 illustrates the list of store and load functions for the
various supported data-types.

FIG. 17 illustrates the architecture of device driver layer for
software-hardware interaction.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates the architecture of the processor-based
system for extracting an accelerator template program. The
architecture of a processor-based system comprises a main
memory 109, processor 107, and multiple accelerators such
as accelerator 1 101, accelerator 2 110 and accelerator 3 111.
Each accelerator consists of a bus interface 102, local
memory 103, compute core 104 and direct memory access
(DMA) 105 and an accelerator control unit 106. The local
memory 103 of the accelerator contains one or more random
access memories (RAM). The computational functions of the
accelerator are performed by the compute core 104. The
system illustrated in FIG. 1 can also include co-processors
and peripherals, for example, an universal asynchronous
receiver transmitter (UART), display, etc.

This invention describes a compilation method of extract-
ing and implementing an accelerator control program from an
application source code in a processor based system consist-
ing of accelerators, one or more processors and one or more
main memories. The accelerator control program that resides
in the accelerator control unit 106 controls the functions of the
accelerator. An accelerator 101 comprises a DMA 105, a
compute core 104, a local memory 103 and a programmable
accelerator control unit 106. The application source code
comprises arrays and loops. The input application source
code is sequential, with loop, branch and call control struc-
tures, while the generated output of this invention has parallel
execution semantics.

The compilation method comprises the step of performing
loop nest analysis, transformations 304 and back-end pro-
cesses 306. The step of loop nest analysis consists of depen-
dence analysis and pointer analysis. Dependence analysis
determines the conflicts between the various references to
arrays in the loop and pointer analysis determines if two
pointer references in a loop are in conflict. Transformations
convert the loops from their original sequential execution
semantics to parallel execution semantics. The step of con-
ducting transformations comprises the steps of conducting
loop tiling and conducting input compute output loop cre-
ation. The step of conducting loop tiling is a compiler trans-
formation that divides the iterations of the loop nest into tiles
and the size of the tile is chosen based on the amount of local
memory available and on the required performance of the
accelerator. In the step of conducting input compute output
loop creation, the inner-most loop created by the loop tiling
process is split into multiple loops and each of the split loop
is classified into an input, compute or output activity of the
accelerator. In the step of conducting back-end processes 306
for creating an accelerator control program 311 that parallel-
izes the activities of the components of the accelerator, using
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the output of the loop-nest analysis and transformation, the
parameters, the memory map of the accelerator and hardware
dependent software are generated. The parameters of the
accelerators include the number of direct memory access
channels, size and number of random access memory banks
and the connectivity between the ports of the random access
memory banks and the compute core 104. The memory map
contains each accelerator’s address space, the address loca-
tion of an accelerator’s components, and the address of each
accelerator’s local variable. The hardware dependent soft-
ware is a software layer that provides interfaces to allow the
application software to interact with the accelerator hard-
ware.

The hardware dependent software resides in the main
memory 109 along with the application source code. In the
final step, the application source code is modified in order to
invoke the hardware dependent software. The invocation of
the hardware dependent software executes the accelerator
control program 311.

The compiler method for extracting an accelerator tem-
plate program is hereafter referred to as partitioning. Loop
nests are a set of hierarchically enclosed loops. The partition-
ing process includes an analysis of the loop-nests and func-
tions in the application source code and the transformation of
the loop-nest and functions into a set of direct memory access
(DMA) 105 accesses and compute cores 104. The user selects
the loop-nests and functions that are to be transformed into
parameters for the accelerator 312 and the accelerator control
program 311. The partitioning process then operates on these
loop-nests and functions.

This invention describes the compilation method in terms
of the analysis and transformations performed on the user
selected loop-nests. However, the analysis and transforma-
tions mentioned in this invention can also be performed on
user selected functions by considering the function as a loop
that is called once each time the function is invoked.

The DMA 105 accesses allows for fast transfer of data from
the main memory 109 to the accelerator local memory 103 or
vice versa. The compute cores 104 operate on the data fetched
by the DMA 105 accesses. As the data is stored in the local
memory 103, the compute cores 104 can access the data very
fast. Also, as the local memory 103 is organized in banks with
multiple-ports, the compute cores 104 can access multiple
data in parallel further speeding up execution in the accelera-
tor.

The partitioning process generates the accelerator control
program. The partitioning process determines the optimal
parallelism between the DMA 105 accesses, and between the
DMA 105 accesses and compute cores 104 and generates the
appropriate synchronization between these various DMA 105
accesses and compute cores 104 to ensure the execution is
correct. Finally, the partitioning process creates the instruc-
tions that control the communication and synchronization
between multiple accelerators and between each accelerator
and the processor 107.

In addition to generating the program for the accelerator
control unit 106, the partitioning process also determines the
optimal parameters of the accelerator components such as
number of DMA channels, number and size of local memory
banks, etc., based on user input 303 and user supplied area,
power and performance constraints 305.

FIG. 2 illustrates the input and output diagram for the
partitioning process. The partitioning process 201 requires
the following two inputs: the actual application such as the C
application 202 with loops or functions that the user needs to
accelerate; and, the system parameters 203 of the system in
which the accelerator resides. Examples of system param-
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eters include memory map, amount of local memory avail-
able, system buses, etc. The technology file 204 is the descrip-
tion of the underlying silicon implementation of the system,
such as field programmable gate array (FPGA) or application
specific integrated circuit (ASIC) that assists the partitioning
process 201 to select different system parameters depending
on the technology that the user selects. The partitioning pro-
cess 201 requires user guidance 205 from the user for certain
tasks such as determining the DMA 105 burst size, etc. The
user guidance 205 can be an input in the form of an area,
memory, power, cost constraints, etc. of either the overall
system illustrated in FIG. 1, or specific to one or more of the
accelerators illustrated in FIG. 1.

The partitioning process 201 takes the above inputs, deter-
mines the DMA 105 and computational statements, and then
further parallelises the DMA 105 and computational state-
ments. The hardware parameters file 206 lists the hardware
parameters of the accelerator, for example, the number of
DMA 105 channels, number of random access memory
(RAM) banks, etc. The partitioning process 201 generates an
accelerator control program 207 that can be executed instead
of the application source code. The partitioning process also
generates the device driver that allows the original application
source code to communicate with the accelerators. The modi-
fied C application 208 is the original application with the
driver call inserted and the C to register transfer language
(RTL) input code 209 is the part of loop that is transformed
using behavioural synthesis. The partitioning process gener-
ates the modified system parameters 210 of the system in
which the accelerator resides. The modification involves
changing the memory map and other system parameters.

FIG. 3 illustrates the various steps involved in the extrac-
tion of the accelerator component program from an applica-
tion source code. The first step in partitioning is a compiler
front-end that performs the task of parsing and semantically
analysing 302 the input application source code, i.e., the C
source code 301 to ensure validity and semantic correctness.
Further, the compiler front-end converts the input application
to an internal intermediate representation (IR) format. The IR
serves as the repository or database of the application for all
further steps in the partitioning process. The partitioning pro-
cess works with any standard compiler front-end. The IR can
be either in the Abstract Syntax Tree (AST) format or the
list-based N-addr code format. The Stanford University Inter-
mediate Format (SUIF) compiler front-end is used for the
implementation of the partitioning process. However, the
techniques mentioned in this invention can be used with any
other standard IR and compiler front-end.

The second step of the extraction process is loop-nest
analysis and transformations 304. Loop-nest analysis 304
involves dependence analysis and pointer analysis.

Dependence analysis is described below. In the partition-
ing process, dependence analysis refers to the method of
determining the conflicts between the various references to
arrays in the loop. A conflict arises when two or more array
references access overlapping areas of either the local 103 or
main memory 109.

The partitioning process 201 needs array dependency
information to allow it to perform code motion of array ref-
erences and also loop transformations, such as tiling and
distribution that are impacted by array dependences.

Array dependences are of the following two types: loop-
independent and loop-carried. A dependence, either true, anti
or output, that is independent of the loop nest is termed as
loop-independent, while a dependence that arises because of
loop iterations is termed as loop-carried. Examples of the two
dependences are shown below:
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// Stmt1
// Stmt2

In the above loop, there is a loop-independent dependency
between Stmt2 and Stmt1. There is also a loop-carried depen-
dency between the array references in Stmtl, as iteration i of
Stmt] is dependent on iterations i—-1 and i+1.

To determine if there are dependences between any pair of
array references, the index expressions of the array references
need to be analysed. Dependence analysis is performed only
if the index expressions are linear equations. Array references
involving non-linear index expressions are assumed to con-
flict with all other references. If the two index expressions are
linear equations of the form:

“a*i+b” and “c*i+d”, then the respective array references are
in conflict if, for some i1, 12 in the loop iteration space, the
equation “a*il+b=c*i2+d” is satisfied.

The greatest common divisor (GCD) test is used to deter-
mine the conflict. However, any existing technique such as the
Omega test can be used to determine the array dependency. If
there is dependence between the pair of array references, a
dependence vector that indicates both the direction and dis-
tance of dependence is calculated. The dependence vector
encapsulates all information regarding the dependence,
including whether it is loop-independent or loop-carried, the
distance of the vector, i.e., the iteration that conflicts with the
current iteration and the direction of the vector, i.e., counting
towards the lower or the upper loop bound.

The data dependency pass can be either pre-calculated or
performed “on-the-fly”. A pre-calculated pass would deter-
mine the dependences between all array references and store
the same in one operation. An “on-the-fly” pass, on the other
hand, would perform the actual dependence test as and when
any subsequent transformation requests information between
a pair of references.

FIG. 4 illustrates a sample application source code on
which the process of dependency analysis will be conducted.
The results of this application are described below. After
dependency analysis, the dependency vectors are listed
below.

Dependency
afi][j+1]:<1, 0>
This dependency vector indicates that for the outer loop i.e.,
index i, the two array accesses have a distance of one iteration.
Notice that because the two array accesses have a non-zero
distance in the outer loop, they are independent in the inner
loop, i.e., for a given outer loop index value, the two array
access will never be in conflict.

Dependency  vector  between
a[i+1][j]:<0, 1>
This dependency vector indicates that the two array accesses
have a distance of one iteration for the inner loop, i.e., index
j- This implies that the second array access, in the current
iteration of the inner loop, refers to the same location as the
first array accessing the previous iteration of the inner loop.
Similarly, other dependency vectors are listed below:
Between a[i][j+1] and a[i+1][j]:<-1, 1>
Between a[i][j] and a[i+1][j+1]:<-1, -1>
Between a[i][j] and a[i][j+1]: <0, -1>
Between a[i][j] and a[i+1][j]: <-1, 0>

Pointer analysis is a technique used to disambiguate two or
more pointer references in the application source code. In the
context of the partitioning process, pointer analysis is used to

vector  between  a[i+l][j+1] and

ali+1][j+1] and
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solve the problem of determining if two pointer references in
a loop are in conflict. Two references are in conflict if they
refer to the same memory location.

Pointers can refer to either statically allocated memory
locations, i.e., stack and global variables, or to dynamically
allocated memory locations, i.e., heap variables. Standard
pointer analysis techniques, for example points-to analysis,
are used to disambiguate pointer references.

The transformation technique 304 of the extraction process
contains different processes such as loop fusion, scalar
replacement, loop tiling, input or compute or output loop
creation, local array renaming and merging DMA 105 trans-
fers. The aforementioned processes are described below.

Loop fusion is a transformation that combines loops where
it is functionally correct to do so. Loop fusion results in a
single loop whose body includes the bodies of all the fused
loops. Loop fusion is functionally correct if all the original
data dependencies are maintained in the fused loop and no
incorrect additional dependencies are introduced. A benefitof
loop fusion is that the body of the fused loop is larger than
each individual loop and therefore has more potential for
high-level synthesis optimisations. Another advantage of
loop fusion is that data-transfers that would have occurred
between the boundaries of the original loops are avoided,
thereby reducing the number of DMA 105 transfers. Loop
fusion can thus have a significant impact on the performance
of the accelerated system.

Two loops are candidates for fusion if the following con-
ditions are met:

a. The step and bounds of each loop are compile-time

constants;

b. The code in between the two loops is independent of the
two loops;

c. The loops are at the same nesting level;

d. There are no read-after-write (RAW), write-after-read
(WAR) or write-after-write dependences between scalar
variables in the two loops;

e. In the fused loop, none of the array values produced by
the second loop body in the current iteration are con-
sumed or produced by the first loop body in future itera-
tions; and,

f. In the fused loop, none of the array values produced by
the first loop body in future iterations are consumed or
produced by the second loop body in the current itera-
tion.

The application source code example illustrated in FIG. 4

does not have any candidates for loop fusion.

FIG. 5A illustrates the sample application source code on
which the process of loop fusion will be applied. The two
loops illustrated in FIG. 5A are candidates for loop fusion
because they satisfy all the conditions mentioned above.

FIG. 5B illustrates the resultant fused loop after the appli-
cation of the loop fusion process on the sample application
source code illustrated in FIG. 5A.

After conducting the process of loop fusion, the resulting
loop provides better acceleration than the original individual
loops together. In the original application source code, the
array “b” would need to be transtferred twice, and array “a”
would need to be transferred three times, i.e., twice for read-
ing in, and once for writing out. After loop fusion, array “b”
will be transferred once, and array “a” will be transferred
once for writing out. Thus, loop fusion substantially reduces
the time spent in communication or data transfers.

Scalar replacement is a compiler transformation that
replaces array references with scalar variables when array
references within the loop are reused. In essence, scalar
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replacement reduces the number of array references within
the loop by replacing some of them with scalar temporaries.

The process of scalar replacement is conducted on the loop
prior to the loop tiling transformation, or after all the trans-
formations is completed on the computation loop body.

Consider the case when scalar replacement is conducted on
the loop prior to the loop tiling transformation. In this case,
scalar replacement reduces the amount of global memory
accesses and hence reduces the amount of DMA 105 trans-
fers. At this stage of the partitioning process, only the inner-
most loops of a loop-nest can be moved to an accelerator
because scalar replacement converts a perfectly nested loop-
nest into a loop-nest that is not perfectly nested. The parti-
tioning process can move a loop-nest to an accelerator pro-
vided the loop next itis perfectly nested. In a perfect loop nest,
the inner loop is the sole statement within the outer loop.

Consider the case when scalar replacement is conducted on
the loop after all the transformations are completed. In this
case, scalar replacement is applied on the code that is part of
the compute core 104 of the accelerator 101. Scalar replace-
ment reduces the amount of accelerator local memory 103
accesses thereby improving the performance of the compute
core 104 of the accelerator 101.

The merging DMA 105 transfers technique, however, miti-
gates to a large extent the drawback of not performing scalar
replacement before the loop tiling transformation. Thus, for
innermost loops, scalar replacement is applied before loop
tiling; and, for loop nests, scalar replacement is applied after
all the other transformations.

FIG. 6A illustrates an example of an application source
code on which the process of scalar replacement will be
applied. The examination of the array accesses, for the inner-
most loop, yields candidates for scalar replacement. Using
the dependency analysis information, it can be inferred that
ali+1][j+1] and a[i+1][j] are candidates for scalar replace-
ment.

FIG. 6B illustrates the resulting application source code
after the application of the scalar replacement process on the
example application source code illustrated in FIG. 6A. Sca-
lar replacement replaces the two array accesses with scalar
variables a_ 0, and a_ 1. The reuse between the accesses
allows optimisation of the number of array accesses within
the loop. The original application source code required four
reads and one write per iteration of the inner loop. After scalar
replacement, each iteration of the inner loop needs three reads
and one write. Similarly the a [i][j] and a[i][j+1] read access
can be scalar replaced. After such a transformation, each
iteration of the inner loop would need two reads and one write
as compared to the original requirements of four reads and
one write. Scalar replacement would be performed if only the
innermost loop was selected for acceleration.

Loop tiling is a compiler transformation that replaces a
loop nest with a functionally equivalent loop nest of greater
depth. An n-deep loop nest may be replaced with anywhere
from (n+1)to 2n deep loop nest after tiling, depending on how
many of the original loops have been tiled.

Tiling a single loop creates a loop nest of depth equal to 2.
The innermost loop has an increment equal to that of the
original loop, and the outer loop has an increment equal to
that of the tile factor or the tile size. The tile factor is also
referred to as the trip size. In the context of the partitioning
process, loop tiling is used to split the original loop or loop-
nest into “chunks”. Tiling splits the original loop iteration
space into smaller regions. This tile splitting has the effect of
also splitting or chunking the array access space into smaller
regions or chunks. Each of these chunks can then be trans-
ferred to the local memory 103 of the accelerators using DMA
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105 transfers. By selecting the appropriate tile size, the local
memory requirements and also the time spent in DMA 105
transfers are controlled. A larger value of tile size implies
higher local memory 103 requirements and less time spent in
DMA 105 transfers. The loop tiling transformation of the
partitioning process splits the original mass of computation
and communication into manageable chunks, each of which
can be efficiently accelerated. Also, loop tiling facilitates
other advanced acceleration techniques such as double buft-
ering. The technique of double buffering is explained under
the description of FIG. 13.

Even though the loop transformation technique used in the
partitioning process is similar to loop tiling technique used in
software compilers, the objective and trade-offs governing
the use of loop tiling is substantially different. Typically, in
software compilers, the goal is to improve data cache perfor-
mance. Hence, the tile size and shape is selected so that the
array accesses are performed with minimum cache misses.
This implies that the tile size and shape must be selected such
that each tile is composed of array elements that are spatially
close together, and that there is cache 108 line reuse between
successive tiles. However, in the context of the partitioning
process, loop tiling is employed to strike a trade-off between
DMA 105 transfer sizes and local memory 103 requirements.
The primary focus in the partitioning process is on tiling the
loop-iteration space and not on tiling the array access space.
Preserving spatial locality between array elements within a
tile is not as important as tiling the loop iteration space
because the computational block uses the fast local memory
103 of the accelerator 101. It is more important to tile the loop
such that it uses minimum local memory 103 and also pro-
motes reuse of array elements between successive tiles.

FIG. 7A illustrates an example of an application source
code on which the process of loop tiling will be applied. In
this example, only the innermost loop is tiled. However, in a
similar fashion, the outermost loop can also be tiled. For
illustration purposes, we assume that the tile factor is selected
as 32, and that MAX is divisible by 32 without a remainder,
for example, MAX=256.

FIG. 7B illustrates the resultant example application
source code after the process of loop tiling is applied on the
example application source code illustrated in FIG. 7A. The
innermost loop is the tiled loop. It executes a constant number
(32) of times for each invocation. The tiled loop acts as a unit
of communication and computation in the accelerator. As all
32 iterations of the tiled loop are executed simultaneously, the
memory requirement is equal to 4*32 words for the 4 reads in
addition to 1*32 words for the 1 write, assuming that each
element of the array “a” is of word size. Of course, in this
example, we can reuse the memory allocated to the read of
a[i][j] for the write of a[i][j], and scalar replacement can be
used to reduce the number of reads, resulting in an optimised
memory size of 2*32 words. However, as illustrated below,
optimising the memory size may result in sub-optimal per-
formance. As a general guide, the partitioning process usually
resolves memory and performance trade-offs in favour of
performance provided the memory constraints are met.

The input-compute-output loop creation technique
involves splitting the tile loop, i.e., the innermost loop created
by loop tiling into multiple loops such that each loop can be
classified as either a loop for transferring data into, i.e., input,
or aloop for computing, or a loop for transferring data out of,
i.e., an output of the accelerator. The number of such loops
created depends on the body of the original tile loop. Typi-
cally, this transformation creates three loops, one input, one
compute and one output from the original loop. The input
loop encapsulates all data transfers from main memory 109
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into the accelerator’s local memory 103. The compute loop
contains all the computation statements from the original
loop body, modified to work on values stored in accelerator’s
local memory 103, and the output loop encapsulates all data
transfers from the local memory 103 to the main memory 109.

The objective of the input-compute-output loop creation
technique is to re-structure the original loop such that the
communication or data transfer portions are segregated from
the computation portions. Once this segregation process is
accomplished, the communication portions can be converted
into DMA 105 transfer statements, and the computation parts
can be converted into register transfer language (RTL) data-
paths using high-level synthesis. Further, during this segre-
gation process, optimisations are employed to either improve
the parallelism between DMA 105 transfers, or to optimise
the DMA 105 transfers. The optimisations including local
array renaming and merging DMA 105 transfers are detailed
below.

Local array renaming is a process used to improve the
parallelism between DMA 105 transfers. This process
removes data dependences between array accesses, thereby
allowing them to be transferred concurrently. Dependences,
such as anti-dependences and output-dependences between
local array accesses can be eliminated by renaming the local
arrays involved. Renaming has the effect of allocating difter-
ent memory locations to the arrays, thus removing any con-
flicts in the addresses.

Once the arrays accesses become independent, they can be
transferred in parallel provided there is sufficient memory
bandwidth, thereby speeding up the overall time spent in
data-transfers between accelerator local memory 103 and
main memory 109.

The input and output loops, after input-compute-output
loop creation, contain statements that transfer data from glo-
bal arrays into accelerator local arrays. The merging DMA
105 transfers technique reduces the amount of such transfers
by merging the statements in the input or output arrays. Two
input statements can be merged, or two output statements can
be merged if they transfer common values and if the merged
statement results in linear array index expressions. This opti-
misation eliminates redundant transfers, thus speeding up the
overall time spent in data-transfers between the accelerator
local memory 103 and main memory 109. The input-com-
pute-output loop creation and the optimisation techniques of
local array renaming and merging DMA 105 transfers are
described below. Input-compute-output loop creation tech-
nique works on the output of loop tiling. The loop tiling
output illustrated in FIG. 7B is used as the input in this
illustration. Also, for purposes of illustration, scalar replace-
ment transformation is not applied on the example applica-
tion source code illustrated in FIG. 7B. The innermost loop,
i.e., tiled loop is now distributed into three loops, one input,
one compute and one output.

FIG. 8 illustrates the example application source code after
the process of input-compute-output loop creation is applied
on the application source code illustrated in FIG. 7B. The
local prefix for the array accesses indicates that the arrays
should be allocated in the local memory of the accelerator.
The first innermost loop is the input loop, the second is the
compute loop and the third is the output loop. Notice that the
compute loop now operates only on arrays allocated to the
local memory 103, i.e., with local prefixes. Thus, the compute
loop is free from the main memory 109 space and has access
to arrays placed in the fast, high-bandwidth memory of the
accelerator.

A further benefit of this transformation is that each state-
ment of the input loop or compute loop can be executed in
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parallel. This transformation is possible because these loops
only transfer data from one location to another and do not
modify the data. Thus, all the four statements of the input loop
can be transferred in parallel through DMA 105 transfers,
resulting in efficient communication between the accelerator
and main memory 109. This output of input-compute-output
loop creation transformation is, however, not the most effi-
cient in memory utilization and performance. The two trans-
formations, namely, local array renaming and merging DMA
105 transfers can be applied to further optimise the memory
requirements and performance of the accelerator.

FIG. 9 illustrates the resultant application source code after
the application of the local array renaming and merging DMA
105 processes on the example application source code illus-
trated in FIG. 8. Note that FIG. 8 illustrates the resultant
example application source code after the process of input-
compute-output loop creation is applied on the application
source code illustrated in FIG. 7B.

In the local array renaming process, the input, compute and
output loops operate on the tiled portions of the array. Each
local array needs to only hold the values of the tile. Further, as
only the innermost loop is tiled, the local arrays in the tiled
portion of the loop can be made single dimensional. Thus,
each of the multi-dimensional local array accesses can be
converted into single dimensional accesses. For the example
input loop, this results in the following two single dimen-
sional local arrays: local_a_ 1, and local_a. This significantly
reduces the memory requirements from requiring a MAX*32
words local memory to a 2*32 words local memory.

In applying local array renaming process for the example
source code, the write array access “a [i][j]” is either inde-
pendent of the other read accesses or has a non-positive
dependency distance with them. This implies that the write
access can be renamed to a different array, thus avoiding
conflicts between the reads and the write. This results in a new
local array “rename_local_a” which holds the values of a
[1][j] that need to be written back to the main memory 109.
Theresult of this renaming is that the read DMA 105 transfers
and the write DMA 105 transfers are independent and could
thus proceed in parallel. In this example, the 4 reads of the
next set of array elements can proceed in parallel with the
write of the current set of array elements, resulting in a further
speed-up of the data communication.

FIG. 10 illustrates the resultant source code after the appli-
cation of the merging DMA 105 transfer process on the appli-
cation source code illustrated in FIG. 10. The statements in
the input or output loops contain redundant transfers. For
example, transferring 32 elements each of a[i][j] and a[i][j+1]
is equivalent to transferring 33 elements of a[i][j]. The two
statements can be combined to result in a reduction of 31
elements transfer. The merging DMA 105 transfer technique
combines two or more statements that access the same array
provided that the index expression of the combined array
access remains a linear expression. The typical candidates for
merging DMA 105 transfer are of the type a[c*1] and a[c*i+k]
where ¢, k are constant values and k is less than the tile factor.
Further k has to be a multiple of c. In the example illustrated
in FIG. 10, the DMA 105 transfers merging process reduces
the DMA 105 transfers by 62 elements. This transformation
may result in multiple input or output loops.

The final process in the partitioning process is the back-end
process 306. The back-end process 306 performs the follow-
ing tasks:

a. Determines the various parameters of the accelerators
307. The parameters of the accelerators include the num-
ber of DMA channels, size and number of RAM
memory banks, etc.
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b. Determines the memory map 308. Each accelerator’s
address space, the address location of its various com-
ponents, and the address of each accelerator local vari-
able are determined.

c. Generates the accelerator controller program 309. The
accelerator control program directs and co-ordinates the
various accelerator tasks such as DMA transfers, com-
putations, etc.

d. Generates the device drivers 310. The device driver acts
as the software interface between the application and the
hardware accelerator.

The back-end 306 operates on the output of the previous
loop-nest analysis and transformations step 304. The back-
end 306 passes utilize the structure and contents of the trans-
formed loops to achieve the translation of the loop into a
hardware accelerator.

The first task of the back-end is to construct the appropriate
accelerator. The accelerator contains components such as
local memory, DMA’s 105 ports, etc., that can be customized
to get the best possible performance and area trade-offs. The
template parameters generation 307 pass analyses the trans-
formed loop(s) to determine the accelerator parameters. The
accelerator parameters include DMA channels, RAM bank
sizes, compute core port and RAM bank compute core con-
nectivity.

A DMA 105 channel is an entity that performs data-trans-
fer between a source and a sink memory. A channel can be
either a physical channel, i.e., a hardware entity that contains
address generation units and registers, or a virtual channel. A
virtual channel is an entity that holds the attributes of the
data-transfer, for example, source and sink addresses,
addressing modes, etc., separate from the physical implemen-
tation of the transfer mechanism.

The number of channels influences both the area and the
performance of the accelerator. As the channels are operable
in parallel, it is beneficial to have multiple channels that can
transfer data in parallel, thus speeding up the overall rate of
data-transfer. However, each channel incurs a hardware cost
in terms of gates or memory. The step of determining the
number of DMA 105 channels allows for a trade-off between
the area cost of the DMA 105 component of the accelerator
and its data-transfer performance. The algorithm to determine
the number of DMA 105 channels is itemized below:

Step 1: Assign an order number to each of the input, compute
and output loops.

Step 2: Each local array access that is in an input loop,
compute loop or output loop constitutes a vertex. An edge
exists between two vertices if there is a DMA 105 transfer
between them. The direction of the edge is the direction of
DMA 105 transfer. Create a graph G with vertices V and
edges E.

Step 3: Number each vertex with its order number. The order
number is the number of the input-compute-output loop
from which this vertex was created.

Next, assign channels to the edges. Edges with overlap
between the order numbers of their source and sink
vertices represent DM A transfers that benefit from being
parallel. Hence, these edges are allocated different chan-
nels.

Step 4: Group vertices according to their order number.

Step 5: Proceed through the groups of vertices according to
their order number.

Step 6: For each vertex in the group, if it is a source vertex,
assign different channels from the list of available channels
to each of the source vertex’s outgoing edges. Mark each
edge as active. Remove the assigned channels from the list
of available channels.
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Step 7: If no channels are available, identify a candidate edge
that is active and that has already been assigned a channel,
and then allocate the same assigned channel to the above
vertex. Note that the choice of the candidate edge can
influence the overall performance of the accelerator.
Choose an edge that has the shortest distance between its
sink and source vertices. Remove the candidate edge from
the graph.

Step 8: Ifthe vertex is a sink vertex, mark each ofits incoming
edges as inactive. Move the channels assigned to its incom-
ing edges to the list of available channels.

Step 9: Repeat steps 6, 7, 8 until there are no more groups of
vertices.

The algorithm described above balances the cost of creat-
ing new channels with the performance loss of sharing the
same channels. Sharing channels implies that the DMA 105
transfers cannot proceed in parallel. However, it may not be
cost effective to create more channels in order to increase
performance. This algorithm can be tuned to optimise the
cost-performance trade-off. This optimisation is conducted
by initialising the list of available channels at the start of the
algorithm. The more the number of available channels, the
better the performance and higher the cost as the cost is
directly proportional to the number of gates or logic elements.

RAM banks, sizes: RAM banks are memories local to the
accelerator. These memories are required to hold the data
transferred from the main memory 109 using DMA 105 trans-
fers, or to hold the data generated from the computations
performed by the compute core 104. As each RAM bank has
a limited number of ports, if is essential to have multiple
banks in order to access multiple data in parallel. Access to
multiple data in parallel allows the DMA 105 channels to
operate in parallel, and also improves the performance of the
compute core 104. The algorithm to determine the number of
RAM banks and sizes is provided below:

Step 1: Create a graph G with vertices V and edges E as
described in steps 1, 2, 3 of the algorithm described above
used to determine the number of DMA channels.

Step 2: Assign a size to each vertex that belongs to an input or
output loop. The size of the vertex is calculated by substi-
tuting the index expression of the array reference with the
maximum and minimum values of the loop index variable.
If the minimum or maximum values are not known, then
the size of the array is assigned to the vertex. By default,
vertices belonging to compute loops are assigned a size of
Zero.

Step 3: Proceed through the groups of vertices in order.

Step 4: For each vertex in the group, collect all instances of
vertices with the same array name and combine into a
single vertex. The size of the combined vertex is the maxi-
mum of the sizes of the individual vertices.

Step 5: For each source vertex in the group, assign a bank
from the list of available banks. Change the size of the bank
to be the maximum of the current bank size and the size of
the vertex. Initially, all banks are of size zero. Remove the
assigned bank from the list of available banks.

Step 6: If no banks are available, choose a candidate bank to
assign to this vertex that has the closest size to the size of
the vertex.

Step 7: If the vertex is a sink vertex, move all banks assigned
to its source vertices to the list of available banks.

Step 8: Repeat steps 4, 5, 6, 7 until there are no more groups
of vertices.

The above algorithm assigns different banks to arrays that
can be DMA transferred in parallel. This assignment is per-
formed provided memory banks are available. The list of
available memory banks can be used to control the creation of
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more RAM banks. Typically, new RAM banks can be added

to the available list provided the memory budget for the

accelerator is not exceeded.

RAM banks and compute core 104: After the number of
RAM banks required has been calculated, and the assignment
of local arrays to the RAM banks has been completed, the
next step is to determine the number of RAM bank ports, the
number of compute core ports and the connectivity between
the RAM banks and compute core 104.

The number of ports for each RAM bank depends on sev-
eral factors. The first factor is the technology in which the
RAM bank is implemented which may limit the maximum
number of ports per RAM bank. FPGA solutions typically
allow each RAM bank to have a maximum of two ports, i.e.,
dual read-write ports. The second factor is the data require-
ment of the accelerator components. For example, if a RAM
bank needs to service the DMA 105 and the compute core 104
atthe same time, then a dual port is necessary. The third factor
is the area cost of the ports. Adding ports to a RAM bank
typically increases the area cost in an exponential manner.
Thus, limitations on the accelerator area may prohibit RAM
banks with many ports. Similarly, the number of ports for the
compute core 104 is determined by the data requirements of
the parallel operations. As adding ports increases the area
cost, accelerator area limitations also influence the number of
compute core ports.

The compute core 104 accesses data stored in the RAM
bank memories through the connections between the com-
pute core ports and RAM bank ports. These connections,
either bus-based or point-to-point, determine the connectivity
between the compute core 104 and the RAM bank. Similar to
the ports, the connectivity also influences the area cost of the
accelerator and the performance of the compute core 104.

The algorithm to determine the number of ports for com-
pute core 104 and their connectivity with RAM bank ports is
described below. This algorithm is based on the assumption
that RAM bank assignment has been performed. In the RAM
bank assignment process, the location of each local array in
the accelerator is determined. The algorithm provided below
assigns compute core ports and connects them to the previ-
ously determined RAM bank ports.

Step 1: Proceed through each compute loop.

Step 2: For each statement in the compute loop, mark all
compute core ports and connections as available.

Step 3: Assign different compute core ports to the array
accesses in the statements of the compute loop. The assign-
ment process is as follows:

a. If there are no available compute core ports, create a new
port and connection. Mark the port and connection as
unavailable.

b. If no compute core ports are available, connections are
created and a candidate port is assigned to the array
access.

c. If the array has already been assigned a compute core
port, the same port is re-used for this array access. Mark
the port and connection as unavailable.

d. If there are multiple available ports, choose a port that
has an existing connection to the RAM bank that con-
tains the array. Mark the port and connection as unavail-
able.

e. If no such port is available, create a new connection
between a candidate port and one port of the RAM bank
that contains the array. Mark the port and connection as
unavailable.

Step 5: Repeat steps 3 and 4 until there are no more statements
in the compute loop.
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Step 6: Repeat steps 2, 3, 4 until there are no more compute
loops.

This algorithm assumes that all the operations within a
compute loop statement can occur in parallel. Thus, the algo-
rithm may assign more or fewer ports than is necessary. In
order to avoid this problem, the input to the algorithm can be
changed to represent the exact parallelism that would be
detected by a C to RTL synthesis tool for the given compute
loop.

The accelerator parameters as determined by the steps
mentioned above for the example application source code are
illustrated in FIG. 11. In this example, assume that the target
implementation is a FPGA with a limit of dual ports for each
RAM bank. Further, assume that DMA 105 and compute core
104 components of the accelerator operate in parallel. For
determining the number of compute core 104 ports, assume
that the schedule for the compute core 104 code is the same as
that after input-compute-output loop creation.

Memory map generation: Once the parameters of the
accelerator components have been determined, the next step
is to generate the memory map 308 of the accelerator. The
memory map lists the addresses, both local and global of each
component of the accelerator and all the local array and scalar
variables. Assigning addresses allows the processor to com-
municate with the accelerator by using load and store instruc-
tions.

Each accelerator needs to be allocated a base address and a
high address. All the address values between the base and the
high address belong exclusively to the accelerator. Typically,
the base address of the accelerator is specified by the system
designer, or by the tools used to build the entire system
consisting of the processor(s), accelerator(s) and other
peripherals. The high address depends on the total memory
requirements of the accelerator and is calculated during
memory map generation 308. In the memory-mapped
scheme, each register and memory location in the accelerator
must be assigned an address if the processor 107 needs to
access it. Hence, the total address space consumed by the
accelerator typically depends on the number of registers and
the size of the memories in its components.

The memory map also specifies the address of each accel-
erator local array and scalar variable that needs to be accessed
by the processor 107, DMA 105 or compute core 104. The
local arrays reside in the RAM banks and need to be assigned
a start or base addresses. The DMA 105 transfers can then
occur to array index offsets from the base address. Similarly,
the compute core 104 can access the local arrays by specify-
ing the offset from the base address.

The local scalar variables need to be assigned unique
addresses. This allows the processor 107 to access them in
order to either initialize or read their values. Further, the
processor 107 may need to access some of the accelerator
controlunit’s 106 registers in order to perform actions such as
starting or halting the accelerator, debugging and diagnostics,
etc. All such registers must also be assigned unique addresses.

Two types of address spaces exist for the accelerator based
system: the global address space, and local address space. All
memories or registers that reside in the accelerator but need to
be accessed by the processor 107 must be assigned addresses
in the global address space. This implies that all local arrays,
scalars and accelerator control unit’s 106 registers that are
accessed by the processor 107 must be assigned addresses in
the global address space.

The local address space is intended for the accelerator’s
usage and may not be completely visible to the processor 107.
Local arrays, scalars and accelerator control unit’s 106 reg-
isters accessed by the accelerator components such as DMA
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105 and compute core 104, must be assigned in the local
address space. Note that most local array or scalar variables
and accelerator control unit’s 106 registers may reside in both
the global and local address space. However, some may reside
only in the local address space. For example, local arrays or
scalar variables that are used for temporary purposes during
DMA 105 transfers or computations are present in the local
address space and do not have a corresponding address in the
global address space. Global address space is usually limited
by system constraints, while the accelerator has virtually
unlimited local address space at its disposal. However, in
order to minimize the area cost of the internal address lines,
the local address space is usually limited to a reasonable
storage, for example 16 mega bytes of address space.

Memory map of the accelerator components: The first step
in generating the memory map 308 is determining the starting
address for each component of the accelerator. The accelera-
tor components include the DMA, RAM banks, accelerator
control unit 106 and the compute core 104. Some of these
components have a fixed size, while the size of other compo-
nents is determined by the requirements of the application.
For example, the size of each RAM bank is determined by the
RAM bank size calculation algorithm mentioned above.

The components of the accelerator and their attributes are
the inputs to the partitioning process. The attributes of the
components of the accelerator include component identifica-
tion, size, priority, fixed or floating, and group identification.

Priority refers to the importance of each component in the
address allocation order. Components with a higher priority
are allocated first. If two components have the same priority,
then the component with the larger size will be allocated first.

A component is tagged as floating if it can be placed any-
where in the address map, even in the gap between compo-
nents that are already mapped to addresses, provided space
permits. Otherwise, the component is tagged as fixed.

Ifthe component is part of a group, then it is tagged with a
group identification. A group is considered as one component
of cumulative size during address allocation.

Output: Start (i.e., base) address for each component. This
address is specified as an offset from the start (i.e., base)
address of the accelerator. The algorithm to generate the
memory map is described below.

Step 1: Promote the size of each component.

Increase the size of each component such that it is a power
of'two. This step is conducted in order to simplify the address
decoding in the accelerator.

Step 2: Arrange components in order of decreasing order of
priority.

Components within a group are also ordered in decreasing

order of priority.

Step 3: Assign an address to each component as shown in
steps 6,7, 8

Step 4: If the component is a group, first assign offsets from
the group start for its components as shown in steps 5, 6 and
7. Finally, assign the start offset for the group by consid-
ering it as a component. The size of the group is the total
address space required by the group after each of its com-
ponents has been assigned offsets.

Step 5: If a component is fixed, the possible start offset is the
first un-allocated offset.

Step 6: If a component is floating, search for the smallest
unused address space between previously allocated com-
ponents such that the size of the unused address space is
greater than the promoted size of the component.
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If such an address space exists, the possible start offset is
the start address of the unused address space; if an
address space does not exist, the possible start offset is
the first un-allocated offset.

Step 7: Align the component on a boundary that is the same as
its promoted size. If the component’s possible start offset is
not aligned, move the start offset to the first aligned offset.
For example, if the possible start offset is 512 and the size
of the component is 1024, the actual start offset becomes
1024, leaving a gap of 512 locations. This alignment is
done to simplify address decoding within the accelerator.

Step 8: The actual start address of each component is then
calculated.

The start address in the local address space is the sum of the
actual start offset and group start offset. The start address
in global address space is the sum of the actual start
offset, group start offset and accelerator start address.

Address assignment for local array and scalar variables:
During the step of determining RAM bank number and sizes,
the assignment of local arrays to the RAM banks is also
conducted. All scalar variables reside within the compute
core 104. As the previous step of generating the memory map
for accelerator components generates the start address for
each RAM bank and the compute core 104, it becomes easy to
conduct the address assignment for each local array and sca-
lar variables. The start address of a local array is the start
address ofthe bank for which the array is assigned. If there are
multiple arrays assigned to a bank, the offset within the bank
is determined by adding the size of previously assigned local
arrays. The offset within the bank added to the start address of
the bank then becomes the start address of the local array.
Each scalar variable can be assigned an address within the
compute core’s 104 address space by sequentially assigning
addresses starting from the base address of the compute core
104. One method of optimising the address assignment is by
ordering the scalar variables according to their data-types and
then performing the assignment.

Controller program generation: The controller program
309 is a set of commands that control the overall execution of
the accelerator. These commands are used to initiate the vari-
ous activities such as DMA 105 transfers, etc., or to synchro-
nize between activities, for example, wait for a DMA 105
transfer to complete, or to synchronize between the processor
107 and the accelerator such as signal termination of accel-
eration to the processor 107.

The task of the partitioning process is to generate a custom
controller program 309 for each selected loop in the applica-
tion source. After the n analysis and transformation pass, the
loop is transformed into a form that can be converted into the
controller program.

The steps involved in generating the controller program for
the transformed loop is as follows:

Step 1: Generate sequential control program: During this step
the basic commands needed to execute the loop in the
accelerator are determined. These commands may also
contain parameters that need to be determined. For
example, a “do_dma” command may also need the size of
transfer, and whether it is a read or write DMA transfer.
The rules listed below convert the transformed loop into the

controller program.

Rule 1: Process each inner loop, whether input, compute or
output

Rule 2: Generate the controller program in the same
sequence as the inner loops of the transformed loop.

Rule 3: Each statement of an input loop becomes a DMA
command that reads from the main memory 109 into a
RAM bank.
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Rule 4: Each statement of an output loop becomes a DMA
command that writes from a RAM bank into the main
memory.

Rule 5: Each compute loop becomes a command to initiate
the compute core.

Rule 6: Insert a wait statement after each DMA or compute
core command.

Rule 7: The outer-loop becomes a loop statement of the
controller program that encloses all the DMA and com-
pute core statements.

Rule 8: If the outer-nest is present, it becomes a loop
statement enclosing all other statements.

The following section illustrates the application of the
above rules to the example application source code, after the
application source code has been transformed by input-com-
pute-output loop creation process. FIG. 12 illustrates the
application of the sequential control program generation rules
on the application source code illustrated in FIG. 8. First, the
controller program is applied to the situation when the outer-
nest loop has not been selected for hardware acceleration. The
description of the steps illustrated in FIG. 12 is provided
below. The “LOOP”-“END_LOOQOP” statements enclose the
body that will be executed “num_iterations” number of times.
These statements are derived from the outer loop generated
by input-compute-output loop creation. The “DO_DMA”
commands are derived from the statements in the input/output
loops. The size of the DMA 105 transfer is equal to the
number of iterations of the corresponding input/output loop.
The address_mode parameter indicates the type of addressing
schemeto be followed during the transfer. The “off-set” mode
indicates that the addressing scheme is increment based. The
“DO_DMA” commands are assigned the channel numbers
determined during the template generation pass. The source
and destination addresses of the “DO_DMA” commands are
addresses of the global/local arrays. The addresses of the
global arrays are typically not known until run-time. There-
fore, these addresses are shown as symbolic addresses. They
are resolved during run-time, and the driver code then patches
the controller program with the exact values before executing
it. The “DO_DMA” commands only initiate, i.e., launch the
DMA transfers and do not wait for completion of the DMA
transfer. Once the DMA transfer has been launched, the DMA
component operates autonomously and performs all the
actions needed for the transfer.

The “DO_COMPUTE” command initiates the computa-
tional block associated with the compute loop. Each compute
loop is assigned a thread identification (thread id) number and
a mode identification (mode id) number. Compute cores 104
that can execute in parallel are assigned different thread ids.
Compute cores 104 that do not execute in parallel are
assigned different mode ids. A set of compute loops that
execute in parallel will have different thread ids and usually
the same mode id, while a set of compute loops that execute
exclusively will have different mode ids and usually the same
threadid. Thread and mode ids can be assigned in any manner.
It is suggested that they be assigned sequentially, starting
from thread id=0 and mode id=0. The “DO_COMPUTE”
commands only initiate, i.e., launch a compute core 104 and
do not wait for completion of the computation.

The “WAIT_DMA” and “WAIT_COMPUTE” statements
are synchronization statements. A “WAIT” statement stalls
the accelerator controller program until the wait condition is
satisfied. A “WAIT_DMA” condition is satisfied when the
channel it is waiting on becomes idle. A “WAIT_COM-
PUTE” condition is satisfied when the data-path compute
core 104 corresponding to thread id and mode id becomes
idle. A “WAIT” statement does not stall the entire accelerator.
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The “WAIT” statement prevents the accelerator from launch-
ing further commands until the “WAIT_COMPUTE” condi-
tion is satisfied. All previously launched commands continue
their execution. This prevents the accelerator from deadlock-
ing and also allows for multiple conditions to be checked in
parallel.

The “SINT” statement issues an interrupt signal to the
processor 107. This statement can be used to send interrupt-
based messages to the processor 107. Typically, “SINT”
statement can be used to signal execution status such as end,
Or error.

The “END” statement indicates the end of the controller
program. The accelerator reaches the idle state upon execut-
ing this statement. For safe and predictable execution, it is the
responsibility of the controller program to ensure that all the
other components such as the DMA and compute cores 104
are in an idle state before the “END” statement is executed.

FIG. 13 illustrates the application of the controller program
generation rules for the situation when the outer-nest loop has
also been selected for hardware acceleration.

Parallelise DMAs 105 and compute cores 104: The previ-
ous step of generating a sequential controller program is
focused on converting the loop into its equivalent accelerator
control form. As a result, the sequential controller program is
functionally correct but not necessarily optimal. The paralle-
lise DMAs 105 and compute cores 104 step further improve
the performance of the accelerator by enabling various com-
ponents of the accelerator to operate in parallel and can sig-
nificantly enhance the overall performance of the accelerator.

The sequential controller program can be optimised by two
methods. In the first method, DMA 105 transfers are paralle-
lised such that reads and writes to main memory 109 occur in
parallel. In the second method, DMA 105 transfers are par-
allelised with the compute core 104 operation such that all the
DMA 105 transfers and the compute core 104 operate in
parallel. To parallelise the DMA transfers, a technique called
wait propagation is employed; and, to parallelise the DMA
transfers with the compute core 104, a technique called
double buffering is employed. The wait propagation and
double buffering techniques are explained below.

Wait propagation: The goal of the wait propagation process
is to permit parallel DMA transfers by moving the
“WAIT_DMA” statements. The key observations for wait
propagation are as follows:

1.“DO_DMA?” statements are launch commands. The con-
troller can execute the next statement immediately after
a “DO_DMA” has been issued. Thus, two successive
“DO_DMA?” statements will result in two DMA trans-
fers occurring in parallel.

2. “WAIT_DMA” statements are termination statements.
The controller will not issue further commands until the
current “WAIT_DMA” condition is met.

3. All launch commands without intervening “WAIT”
statements will execute in parallel.

“WAIT_DMA” statements are placed as far away as pos-
sible from the originating “DO_DMA” commands. Wait
propagation attempts to achieve this by moving each
“WAIT_DMA” statement to the last place that is valid for
execution. Wait Propagation moves “WAIT_DMA” state-
ments beyond other “DO_DMA” commands and thus paral-
lelizes the DMA transfers. A “WAIT _DMA” statement can
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be propagated until it reaches a statement that is in conflict

with it. A statement is in conflict with a “WAIT_DMA”

statement if:

a.ituses the same channel as the “WAIT_DMA” condition,

b. it’s activity reads/writes an address that is read/written

by the “DO_DMA” activity corresponding to the
“WAIT_DMA” statement.

c. it is the “END” statement or the “SINT” statement.
Step 1: Mark all “WAIT” statements as not propagated.
Step 2: Proceed through all the “WAIT” statements sequen-

tially.

Step 3: If the “WAIT” statement is not in conflict with the
statement immediately following it, propagate the “WAIT”
statement as described in Step 4.

Step 4: Move the “WAIT” statement as the next statement
after its immediate successor. If its immediate successor
has multiple outflow paths, then place a copy of the
“WAIT” statement along all the paths.

Step 5: If the “WAIT” statement is in conflict with the state-
ment immediately following it, then mark the “WAIT”
statement as propagated.

Step 6: Repeat steps 3, 4 and 5, above, until the “WAIT”
statement is marked as propagated.

Step 7: Repeat steps 2, 3, 4, 5 and 6, above, until all the
“WAIT” statements have been marked as propagated.

By propagating the “WAIT_DMA?” statement as far away
as possible from its source “DO_DMA” statement, the algo-
rithm optimises the control program. This is because other
statements between the “DO_DMA” and “WAIT_DMA”
statements can be executed while the DMA transfer occurs.
Thus, this parallelisation speeds up the overall execution of
the control program.

Wait propagation occurs along all the control paths. Mov-
ing a “WAIT_DMA” statement beyond a statement with mul-
tiple paths leading out will result in a placement of the
“WAIT_DMA” along each of the paths. This is necessary to
ensure correctness and improve parallelisation. Thus, propa-
gating a “WAIT_DMA” statement beyond an “END_LOOP”
statement moves the “WAIT_DMA” statement to both the
beginning of the corresponding loop and to the next place
after the “END_LOOP” statement. This allows parallelisa-
tion of write DMA transfers with read DMA transfers.

FIG. 14 illustrates the control program derived after apply-
ing the wait propagation process to the sequential control
program generated from the previous step. In order to sim-
plity the description, wait propagation is performed on the
sequential control program generated where the outer-nest
loop is not selected.

Hence, as a result of wait propagation, the three
“DO_DMA” statements can potentially execute in parallel
provided memory and bus bandwidths are available. This
parallel execution results in substantial improvement of the
overall accelerator performance as compared to a sequential
control program.

Double buffering: The goal of double buffering is to permit
DMA 105 transfers to proceed in parallel with the core com-
putation. In the sequential control program, a “DO_COM-
PUTE” statement is invoked only after all its dependent DMA
105 statements have completed execution. This implies that,
usually, the DMA 105 components are idle during the execu-
tion of the actual computations of the accelerator. This results
in sub-optimal overall performance of the accelerator if the
DMA 105 and the compute statements were to occur within a
loop that is executed multiple times. A simple way to perform
DMAS 105 in parallel with computes is to fetch the next set of
data into a different location in the local memory 103 while
the compute core 104 is operating on the current set of data.
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Provided there are no data dependences that prevent it, such
an ordering of DMAs 105 and computes may increase the
overall performance by up to two times over the sequential
control program.

In the double-buffered approach, each local array has two
alternate locations that are also known in the art as buffers.
While a DMA fills up one array bufter, the compute core 104
operates on the previously filled other bufter. The DMA 105
and the compute core 104 exchange buffers. This exchange of
buffers occurs only after both the DMA 105 and the compute
core 104 finish their current operation.

The DMA 105 always fetches the next set of data, while the
compute core 104 operates on the current set of data. It can be
seen that such a mode of operation effectively hides the
latency of the faster operation within the latency of the slower
operation, i.e., the overall latency will be only the latency of
the slower operation and not the sum of the latencies.

The following operations can occur in parallel provided
data dependences permit: read DMA 105 of the next set of
data, computation on the current set of data, and write DMA
105 of the previously computed set of data. This technique is
called double buffering because the result of this transforma-
tion is that each local array whether read or written has two
buffers into which it is alternately read or written.

The partitioning process employs a form of software pipe-
lining to achieve the double buffering technique. It first builds
the data dependency graph of the sequential control program
and then employs a window-based software pipelining tech-
nique to parallelise the DMAs and the computes. Any stan-
dard software pipeline techniques such as Modulo Schedul-
ing, or Perfect Pipelining can be used. Note that the double
buffering is performed only on loops within the control pro-
gram because double buffering is beneficial only when the
same DMA 105 and compute statements are executed mul-
tiple times.

FIGS. 15a and 155 illustrate the control program derived
after performing double buffering. Double buffering is
applied on the example control program shown as output after
wait propagation.

After applying the double buffering technique, the perfor-
mance gains can be substantial, up to a maximum of approxi-
mately two times, when compared to the original code. The
actual performance gain obtained depends on the relative
latencies of the DMAs and the compute operations.

The “SWITCH_BUFFER” command switches the local
memory buffer of the local array, alternating between the two
buffers. This switch occurs for all “DO_DMA” and
“DO_COMPUTE” statements associated with that local
array. The “SWITCH_BUFFER” command can be imple-
mented either by the local memory unit 103 or by the compute
core unit 104. In the case of implementation by the local
memory unit 103, the local memory unit 103 must maintain
separate buffer pointers for the DMAs 105 and the compute
core 104. In the second case, the compute core 104 and the
DMAs 105 explicitly operate on the two buffers by using two
base addresses for the same local array and co-ordinate using
flags to switch between the buffers.

Hardware dependent software (HdS) generation 310: The
final step in the partitioning process is to generate the soft-
ware layer that provides interfaces to allow the application
software to interact with the accelerator. In the software art,
such a software layer is referred to as hardware dependent
software (HdS). The partitioning process generates the HdS
that consists of device driver code and modifies the applica-
tion to include calls to the HdS layer. The device driver code
is a set of C language functions that abstract the low level
details of interacting with the accelerator and allow the appli-
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cation software to interact with the generated accelerator.
Typically, the application software needs functions to invoke,
terminate, and query the accelerator.

After generation of the driver code, the partitioning process
then modifies the application to invoke the accelerator with
appropriate settings instead of the selected software loop or
function.

Generate device driver layer for software-hardware inter-
action: This step generates software code in the form of a
device driver that can be used to control the accelerator. The
application invokes the device driver with the appropriate
arguments for each loop or function that is to be executed on
the accelerator hardware. This step has two main goals. One
goal is to generate all the necessary software code that allows
the processor 107 to interact with the accelerator. The second
goal is to generate software code that ensures that the data in
the main memory 109 is coherent with the data in the proces-
sor’s cache 108. This coherence is necessary because the
accelerator can change the main memory 109 contents
directly through the use of DMA 105 transfers, potentially
invalidating data held in the processor cache 108. The struc-
ture of the device driver layer is shown in FIG. 17.

FIG. 17 illustrates the device driver layer for software-
hardware interaction. Low-level access functions: The low-
level access functions 1701 serve as the communication
primitives that are used by the other upper-level functions to
perform tasks on the accelerator. The primary method of
communication between the processor 107 and the accelera-
tor is by the storage of values to the memory-mapped storage
locations, such as registers or local memory 103 of the accel-
erator by using store instructions. The accelerator can com-
municate with the processor 107 in one of two ways. In the
first case, the accelerator is a passive device and the processor
107 periodically monitors the storage locations of the accel-
erator for any change in value. The value of the accelerator’s
storage locations can be accessed using load instructions. In
the second case, the accelerator can raise an interrupt to the
processor 107 in order to signal its intent to communicate
with the processor 107. The processor 107 accesses the stor-
age locations within the accelerator by using load instruc-
tions. The low-level function that the processor 107 executes
on receiving an interrupt is called the interrupt handler.

The partitioning process emits the necessary load or store
functions and the interrupt handling functions. The load or
store functions depend on the data-types, such as fixed-point,
floating-point, etc., that appears in the application source
code. The load or store functions also depend on the width of
the system-bus. FIG. 16 illustrates the list of store and load
functions for the various supported data-types assuming a
system bus width of 32 bits.

The interrupt handling functions depend on the type of the
processor 107 and also the operating system (OS) running on
the processor 107. Interrupt handling functions for all the
supported processor 107 and OS combinations are pre-coded
and are used in the partitioning process. Similarly, all the load
or store functions are pre-coded.

Control program functions 1702: The accelerator is pro-
grammable and can execute different control programs. For
example, one accelerator can be programmed to execute any
or some of the selected loops or functions in the application.
This is achieved by downloading the appropriate control pro-
gram to the accelerator. Bootstrap functions and run-time
patching functions are the two main types of control program
functions.

Bootstrap functions: The control program must be loaded
into the accelerator in order to execute the selected loop or
function. One option is to synthesize the accelerator with all
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the required control programs already stored in its memory.
Another option is to build the application with the required
control programs stored as data in the form of arrays within
the application. When the application is subsequently
executed, the required control program can be downloaded
onto the accelerator. This downloading can happen either
once at the start of application execution, or, as and when the
selected loops or functions are to be executed in the accelera-
tor. In order to have efficient downloads, the control program
is itself transferred by using the DMA 105 capabilities of the
accelerator. A bootstrap control program is present or can be
stored at run-time in the accelerator. This program can be
configured to fetch the required control program from the
main memory 109 and store it in the accelerator local memory
using DMA 105 transfer. The device driver layer provides the
required bootstrap functions to store and configure the boot-
strap function in the accelerator.

Run-time patching functions: The device driver layer also
provides functions to patch the control program with values
that are determined only at application run-time. Typical
examples of such values include the starting addresses of the
arrays that are to be transferred by DMA, the number of
iterations of the loops, etc.

Data-coherency functions 1703: The presence of data
cache 108 in the processor 107 may lead to inconsistency of
data between the processor’s cache 108 and the main memory
109. This inconsistency could impact the correctness of the
application’s execution in one of two ways. First, the proces-
sor’s cache 108 may hold data that is more recent than the data
at the same address in main memory 109. In such a situation,
the accelerator’s DMA unit 105 may fetch stale data from
main memory 109. Second, once the accelerator’s DMA unit
105 writes data into the main memory 109, the data in the
processor’s cache 108 may become stale. In this situation, the
processor 107 may then start operating on the stale data. In
order to overcome these situations, the device driver layer
contains functions that can either flush the required cache 108
lines into the main memory 109, or can invalidate the required
cache 108 lines. Flushing the cache 108 line ensures that the
main memory 109 is updated with cache 108 data. This is
useful in situations when the cache 108 data is more recent
than the main memory 109 data. Invalidating the cache 108
line forces the processor 107 to fetch the data from main
memory 109. This is useful in situations where the main
memory 109 data is more recent than cache 108 data. The
functions to flush or invalidate cache 108 lines are processor
107 specific. This is because each processor 107 typically has
its own conventions and rules regarding cache 108 line flush-
ing or invalidation.

The device driver layer implements the cache 108 line flush
or invalidate functions for each processor 107 supported. The
partitioning process also generates functions that flush or
invalidate only the required cache 108 lines. The partitioning
process analyses the selected loop or function and then gen-
erates functions that only flush or invalidate those cache 108
lines that may be affected by the DMA 105 statements in the
control program. These functions, referred in the art as data-
coherency functions are called by the top-level accelerator
functions to ensure coherency of data between the cache 108
and main memory 109.

Top-level accelerator functions 1704: The top-level accel-
erator functions are functions that are invoked from within the
application. These top-level functions invoke the other lower-
level device driver layer functions. The top-level functions
consist of the device drivers for each selected loop or function
and functions useful for monitoring and debugging the accel-
erator.
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Device drivers for selected loops or functions: The device
driver performs the tasks of initialising the accelerator with
the scalar values, patching the control program with run-time
values, starting the accelerator, monitoring the accelerator
completion either in polling mode or in interrupt mode, and
finally, loading the scalar values from the accelerator into the
processor’s 107 registers.

Debugging and monitoring functions: Debugging and
monitoring functions are provided to allow for easy debug-
ging and monitoring of the accelerator. While the accelerator
is correct-by-construction, bugs or errors may arise when the
accelerator is integrated into the system. These functions
allow for application-level debugging of the accelerator.
These functions include functions for printing the local
memory contents, starting, stopping and single stepping
through the control program.

The partitioning process automatically modifies the appli-
cation source code to invoke the device drivers. The selected
loops or functions are replaced with calls to the device driver.

We claim:

1. A compilation method for extracting and implementing
an accelerator control program from an application source
code in a processor based system consisting of an accelerator,
one or more processors and one or more main memories,
wherein the accelerator comprise direct memory accesses,
compute cores, local memories and a programmable accel-
erator controller unit and the application source code com-
prises arrays and loops, said compilation method comprising
the steps of:

performing loop nest analysis, wherein said loop nest

analysis consists of dependence analysis and pointer
analysis and wherein dependence analysis determines
the conflicts between the various references to arrays in
the loop and pointer analysis determines if two pointer
references in a loop are in conflict;

performing transformations to convert the loops from their

original sequential execution semantics to parallel

execution semantics, wherein said step of performing

transformations further comprises the steps of:

conducting loop tiling, wherein loop tiling is a compiler
transformation that divides the iterations of the loop
nest into tiles and the size of the tile is selected based
on the amount of local memory available and on the
required performance of the accelerator; and

conducting input compute output loop creation, wherein
the inner-most loop created by the loop tiling process
is split into multiple loops and classifying each of the
split loops into an inner input, compute or output
activity of the accelerator;

performing back-end processes for creating an accelerator

control program that parallelizes the activities of the

components of the accelerator, using the output of the

loop-nest analysis and transformation, further compris-

ing the steps of:

determining the parameters of the accelerator including
the number of direct memory access channels, size
and number of random access memory banks and the
connectivity between the ports of the random access
memory banks and the compute core;

determining the memory map containing said accelera-
tor’s address space, the address location of the accel-
erator’s components, and the address of the accelera-
tor local variable;

generating the accelerator control program comprising a
sequential control program;
wherein generating the sequential control program

comprises the steps of:
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processing each inner input, compute or output loop;

generating the controller program in the same
sequence as the inner loops of the transformed
loop;

converting each statement of an input loop into a
direct memory access command that reads from
main memory into a random access memory bank;

converting each statement of an output loop into a
direct memory access command that writes from a
random access memory bank into global memory;

converting each compute loop into a command to
initiate the compute core;

inserting a wait statement after each DM A or compute
core command;

converting the outer loop into a loop statement of the
accelerator controller program that encloses all the
direct memory access and compute core state-
ments; and,

converting a outer nest, if present, into a loop state-
ment enclosing all other statements,

generating hardware dependent software, wherein the

hardware dependent software is a software layer that

provides interfaces to allow the application software

to interact with the accelerator hardware; and,

modifying the application source code in order to invoke

the hardware dependent software for executing the

accelerator control program.

2. The method of claim 1, wherein the step of performing
transformations further comprises the step of conducting loop
fusion, wherein loop fusion is a transformation that combines
loops where it is functionally correct to do so, thereby
enabling higher level synthesis optimizations and reducing
the number of direct memory access transfers.

3. The method of claim 1, wherein the step of performing
transformations further comprises the step of conducting sca-
lar replacement, wherein scalar replacement is a compiler
transformation that replaces array references with scalar vari-
ables when array references within the loop are reused,
thereby reducing the amount of main memory accesses and
reducing the amount of direct memory access transfers.

4. The method of claim 1, wherein the step of performing
transformations further comprises the step of conducting
local array renaming for making array accesses independent
thereby improving the parallelism between direct memory
access transfers.

5. The method of claim 1, wherein the step of performing
transformations further comprises the step of merging direct
memory access transfers to reduce the amount of direct
memory access transfers by merging the statements in the
input or output loops created from the input compute output
loop creation process.

6. The method of claim 1, wherein the step of dependence
analysis further comprises the steps of:

determining loop independent array dependences, wherein

a loop independent dependence is a dependence that is
either true, anti or output, and that is independent of the
loop nest;

determining loop carried dependences, wherein a depen-

dence is loop carried if the dependence arises out of the
loop iterations;

analyzing index expressions to determine dependences

between array references; and, determining a depen-
dence vector that indicates the direction and distance of
the dependence and whether the dependence is loop
independent or loop carried.

20

25

30

35

40

45

50

55

60

65

26

7. The method of claim 6, wherein, the dependence
between array references is pre-calculated and stored for
further use.

8. The method of claim 1, wherein the step of pointer
analysis disambiguates two or more pointer references in an
application and determines if two pointer references refer to
the same memory location and are therefore in conflict.

9. The method of claim 1, wherein the pointers refer to
statically allocated memory allocations.

10. The method of claim 1, wherein the pointers refer to
dynamically allocated memory allocations.

11. The method of claim 3 wherein the step of scalar
replacement is performed on the loop prior to the loop tiling
transformation.

12. The method of claim 3 wherein the step of scalar
replacement is performed on the computational loop body
after all the transformations are completed.

13. The method of claim 3, wherein the step of scalar
replacement is performed before the step of loop tiling trans-
formation for inner most loops and the step of scalar replace-
ment is performed after all other transformations for loop
nests.

14. The method of claim 1, wherein loop tiling is per-
formed on the loop nest.

15. The method of claim 1, wherein the compute loop
contains all the computation statements from the original
loop body, modified to work on values stored in the accelera-
tor’s local memory.

16. The method of claim 1, wherein the compute loop
encapsulates all data transfers from the local memory to the
main memory.

17. The method of claim 1, wherein the memory map
specifies the address of each accelerator local array and scalar
variable that needs to be accessed by the processor, direct
memory access or compute core.

18. The method of claim 1, wherein the step of determining
random access memory bank number and sizes further com-
prises the assignment of local arrays to the random access
memory bank.

19. The method of claim 1, wherein the accelerator control
program initiates and synchronizes direct memory access
transfers, or synchronizes the activities between the processor
and the accelerator.

20. The method of claim 1, wherein the accelerator control
program is generated for each loop of the application source
and the step of generating the accelerator control program
further comprises the steps of:

parallelizing direct memory accesses and compute cores,
further comprising the steps of:

parallelizing the direct memory access transfers such
that reads and writes to main memory occur in paral-
lel; and

parallelizing the direct memory accesses transfers with
the compute core operation such that all the direct
memory accesses transfers and compute core operate
in parallel.

21. The method of claim 20, wherein the step of parallel-
izing the direct memory access transfers with the compute
core operation, further comprise the step of double buffering,
wherein each local array is provided with two alternative
buffers and when a direct memory access fills up one buffer,
the compute core operates the other buffer.
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22. The method of claim 1, wherein the hardware depen- 23. The method of claim 1, wherein the hardware depen-
dent software consists of device driver code whichisasetof ~ dent software further consists of data coherency functions for
C language functions that abstracts the low level details of res?llvm%i thlf issue of data coherency between the processor’s
interacting with the accelerator and enables the application cache and the main memory.

software to invoke, terminate or query the accelerator. I T S



