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SEARCHING QUERIES USING DATABASE
PARTITIONING

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/814,056 filed Mar. 22, 2001 now U.S. Pat.
No. 6,691,109 entitled “Method and Apparatus for High-
Performance Sequence Comparison,” incorporated herein
by reference.

FIELD OF THE INVENTION

The invention relates to a method for searching multiple
query sequences against one or more sequence databases.
More specifically, the invention relates to a computer-
implemented method and apparatus that provide high-per-
formance, high-speed, remotely accessible sequence com-
parison searches.

BACKGROUND OF THE INVENTION

Sequence similarity is an observable quantity that may be
expressed as, for example, a percentage. Comparison of
newly identified sequences against known sequences often
provides clues about the function of the sequences. If the
sequence is a protein sequence, the sequence comparison
may also provide clues as to the three-dimensional structure
adopted by the protein sequence. Sequence similarity may
also lead to inferences on the evolutionary relatedness, or the
homology, of the sequences.

Current sequence databases are already immense and
have continued to grow at an exponential rate. For example,
the human genome project and other large scale nucleotide
sequencing objectives have resulted in a large amount of
sequence information available in both private and public
databases. Sequence similarity searching is not simply used
to compare a single sequence against the sequences in a
single database, but is also used to compare or screen large
numbers of new sequences against multiple databases.
Moreover, sequence alignment and database searches are
performed tens of thousands of times per day around the
world. Therefore, the ability to quickly and precisely com-
pare new sequence data against such sequence databases is
becoming more and more important.

There are many different methods for comparing
sequences. Some methods, such as those based on the
analysis of transformational grammars (cf. Durbin, et al.,
Biological Sequence Analysis, Cambridge University Press
(1998), Chapter 9), compare sequences by comparing the
properties of the mathematical algorithms that may be used
to generate the sequences in question. However, most com-
mon methods involve the use of sequence alignment at some
point in the comparison process. Sequence alignment pro-
vides an explicit mapping between the residues of two or
more sequences. When only two sequences are compared,
the process is called pairwise alignment, but there are also
methods of constructing multiple alignments that involve
aligning more than two sequences.

The production of a sequence alignment result may be
generically divided into two separate problems. The first
problem is the alignment of the query sequence with the
sequences in the databases being searched. The second
problem is ranking or scoring of the aligned sequences. The
results of the sequence alignment search are then reported as
a ranked hit list followed by a series of individual sequence
alignments, plus various scores and statistics.

There are various programs and algorithms available for
performing database sequence similarity searching. For a
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basic discussion of bioinformatics and sequence similarity
searching, see BIOINFORMATICS: A Practical Guide to the
Analysis of Genes and Proteins, Baxevanis and Ouellette
eds., Wiley-Interscience (1998) and Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic
Acids, Durbin et al., Cambridge University Press (1998).
One of the first used algorithms for performing sequence
alignment searching was incorporated into the FASTA pro-
gram. (Lipman and Pearson, “Rapid and sensitive protein
similarity searches,” Science, Vol. 227, PP. 1435-1441
(1985); Pearson and Lipman, “Improved tools for biological
sequence comparison,” Proc. Natl. Acad. Sci., Vol. 85, pp.
2444-2448 (1988)). The FASTA program performs opti-
mized searches for local alignments using a substitution
matrix. In order to improve the speed of the search, the
program uses an observed pattern or small matches, termed
“word” hits, to identify potential matches before performing
the more time-consuming optimization search.

A popular algorithm for sequence similarity searching is
the BLAST (Basic Local Alignment Search Tool) algorithm,
which is employed in programs such as blastp, blastn, blastx,
thlastn, and tblastx. (Altschul et al., “Local alignment sta-
tistics,” Methods Enzymol., Vol. 266, pp. 460-480 (1996);
Altschul et al., “Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs,” Nucl.
Acids Res., Vol. 25, pp. 3389-3402 (1997); Karlin et al.,
“Methods for assessing the statistical significance of
molecular sequence features by using general scoring
schemes,” Proc. Natl. Acad. Sci., Vol. 87, pp. 2264-2268
(1990); Karlin et al., “Applications and statistics for multiple
high-scoring segments in molecular sequences,” Proc. Natl.
Acad. Sci., Vol. 90, pp. 5873-5877 (1993)). The approach
used by the BLAST program is to first identify segments,
with or without gaps, that are similar in a query sequence
and a database sequence, then to evaluate the statistical
significance of all such matches that are identified, and
finally to summarize only those matches that satisfy a
preselected threshold of significance.

The blastp program compares an amino acid query
sequence against a protein sequence database, while the
blastn program compares a nucleotide query sequence
against a nucleotide sequence database. The blastx program
compares the six-frame conceptual translation products of a
nucleotide query sequence (both strands) against a protein
sequence database. A protein query sequence is compared
against a nucleotide sequence database dynamically trans-
lated in all six reading frames (both strands) by the tblastn
program, and tblastx compares the six-frame translations of
a nucleotide query sequence against the six-frame transla-
tions of a nucleotide sequence database. The program
blastall, one of the implementations of BLAST, can be used
to perform all five flavors of the BLAST comparison.

The BLAST program can be downloaded from the NCBI
and run locally as a full executable. It can be used to run
BLAST searches against private local databases or down-
loaded copies of the NCBI databases. The 1.4 and later
versions of BLAST are capable of being run in parallel using
shared memory multiprocessors. (N. Camp, “High-
Throughput BLAST,” Silicon Graphics, Inc., September
1988, sgi.com/chembio/resources/papers/HTBlast/HT_
Whitepaper.html)

Silicon Graphics, Inc. (“SGI”) has developed an alterna-
tive parallel system for running multiple BLAST searches.
(N. Camp, “High-Throughput BLAST,” Silicon Graphics,
Inc., September 1988, www.sgi.com/chembio/resources/pa-
pers/HTBlast/HT_Whitepaper.html). The system consists of
a modified BLAST executable and a driver, and is called
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High-Throughput BLAST. (“HT BLAST”). HT BLAST
allows multiple sequences to be compared against multiple
databases by only a single invocation of code. The output of
HT BLAST is a summary of the High Scoring Pair infor-
mation generated during the search. Through a single invo-
cation of code, HT BLAST saves on startup overhead
through the reuse of data structures and elimination of the
need to remap the databases. HT-BLAST also removes all
parallel constructs from BLAST, allowing for increased
single-processor speed. Parallelism has then been relocated
to the driver which distributes blocks of sequences to
multiple processors running HT BLAST. HT BLAST uses a
dynamically scheduled loop to maintain load balance. As the
independent tasks are blocks of sequences compared to
multiple databases, the parallel grain-size can be much
greater than it is for unmodified BLAST. Thus, scaling to
large numbers of processors is accomplished even for short
sequences and small databases.

HT BLAST, however, is run on a single multiprocessor
mainframe. The method and apparatus of the instant inven-
tion allows a sequence similarity searching program, such as
the BLAST executable, to be run on multiple, networked,
heterogeneous machines. Moreover, HI-BLAST does not
allow for dividing up collections of databases both by
treating individual databases separately and by partitioning
the individual databases. The method and apparatus of the
instant invention do not require a shared disk architecture,
whereas HT-BLAST assumes shared database storage and
requires memory mapping. Finally, the method and appara-
tus of the instant invention manage multiple BLAST job
requests through its queuing system.

The Blackstone Technology Group has developed a par-
allel processing system that allows for BLAST processing
on a compute farm. (“SmartBlast™—Version 1.0,” Black-
stone Technology Group, computefarm.com/compute/
SmartBlast2.pdf (2001)). Compute farms are large groups of
servers that merge computing power into a single resource
that is mainly used for long-running and memory-intensive
applications, such as those that handle vast amounts of
genetic information. The system, SmartBlast™, distributes
previously created segments of BLAST reference datasets to
servers in the compute farm, based on demand. The seg-
ments are created using a proprietary data segmentation tool,
SmartCache™ (“SmartCache™ Version 2.0,” Blackstone
Technology Group, computefarm.com/compute/
SmartCache2.pdf). Results are then collected, merged, and
sorted by high scoring pair and presented in a single docu-
ment.

The method and apparatus of the instant invention, as
noted above, may be run on a wider class of machines/
operating systems, including Windows and Macintosh,
whereas the SmartBlast™ backend system only runs in a
UNIX/Linux environment. In addition, in contrast to the
apparatus and method disclosed herein, SmartBlast™ does
not appear to divide up the input sequences. Finally, the
apparatus and method of the instant invention allow for
automatic partitioning of the databases during the search
process, as well as in advance, based on the capabilities of
the machines used for searching.

SUMMARY OF THE INVENTION

The invention relates to a computer-implemented method
and apparatus for searching a plurality of query sequences
against at least one sequence database containing a plurality
of sequence records. The method comprises the steps of:

a. partitioning the plurality of query sequences into a set
of smaller subsets of query sequences;
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b. partitioning the at least one sequence database into a set
of smaller subdatabases;

c. designating searching tasks to be performed by asso-
ciating each of said subsets of query sequences with one or
more of said subdatabases, assigning each searching task to
one of a group of computers operating in parallel, wherein
each member of the group of computers operating in parallel
has at least one searching task assigned thereto, and execut-
ing at least some of the assigned searching tasks using the
group of computers operating in parallel; and

d. collecting search results from the executed searching
tasks and generating a unified sequence search result in
accordance with the collected search results.

Also disclosed is an apparatus for performing the above
method, wherein the apparatus comprises:

a: means for partitioning the plurality of query sequences
into a set of smaller subsets of query sequences;

b. means for partitioning the at least one sequence data-
base into a set of smaller subdatabases;

c. means for designating searching tasks to be performed
by associating each of said subsets of query sequences with
one or more of said subdatabases;

d. means for assigning each searching task to one of a
group of computers operating in parallel, wherein each
member of the group of computers operating in parallel has
at least one searching task assigned thereto;

e. means for executing at least some of the assigned
searching tasks using the group of computers operating in
parallel;

f. means for collecting search results from the executed
searching tasks; and

g. means for generating a unified sequence search result
in accordance with the collected search results.

The invention also relates to the above method and
apparatus, wherein the partitioning of the query sequences
and the partitioning of the sequence database is done by each
member of the group of computers operating in parallel. In
addition, the method may also be performed wherein the
partitioning of the query sequences and the partitioning of
the sequence database is based on the processing capacity of
each member of the group of computers operating in par-
allel, and each member of the group of computers operating
in parallel may assign to itself which searching tasks it will
perform. Each of the group of computers operating in
parallel may perform one, two, or more searching tasks
during the execution of the search, and each member may
assign to itself another task once it finishes a searching task.
The process may be reiterated, until all of the searching tasks
are performed.

Each of the group of computers operating in parallel may
be the same or different, and each of the group may have the
same or different operating systems. Moreover, if one of the
computers operating in parallel should fail, the correctness
and/or precision of the search results will not be affected.

One or more of the sequence databases against which the
query sequence is being compared may be derived from the
databases maintained by the National Center for Biotech-
nology Information (NCBI). The plurality of query
sequences are searched against one or more sequence data-
bases, and each of the sequence databases may or may not
be split into a set of smaller databases. The sequence
databases may be searched using any desired algorithm,
such as the BLAST algorithm. The unified sequence search
result may be a sequence alignment. If the unified sequence
search result is a sequence alignment, a raw score may be
reported as part of the result. In addition, an e-score may also
be reported as part of the search result, and the e-score may
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be normalized for each database searched as part of the
generation of the unified search result. Moreover, the unified
search result may be reported as a unified relevance ranked
result list based on the normalized e-score.

The search results of each individual task may be col-
lected by a single computer or by two or more computers of
the group of computers operating in parallel. The unified
search result may then be generated by interleaving the
search results from the executed searching tasks on the basis
of raw scores generated during the executed searching tasks.
The method and the apparatus of the invention allow for
superlinear speedup in the production of the unified search
result, based on total time required to execute all searching
tasks and produce the unified search result, which is equal to
the duration of the period starting when the entire searching
task is placed on a list of searching tasks accessible to all of
the one or more computers operating in parallel and ending
when the unified result for the entire searching task is placed
on a list of results and a signal to exit has been sent to all of
the computers operating in parallel. Superlinear speedup
occurs when an increase in the number of computers oper-
ating in parallel causes a greater than pro rata reduction in
the total time, as when the time required using four com-
puters operating in parallel is less than one-half of the time
required with two computers operating in parallel.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart depicting an overview of the
sequence comparison method of the invention.

FIGS. 2A and 2B illustrate a rectangular graphical rep-
resentation of searching tasks that is used to describe the
method if the invention.

FIGS. 3 A through 3Q are multipart figures that provide a
detailed example of the application of the method described
in FIG. 1.

FIG. 3A illustrates a graphical representation of an entire
task searching 3 sequences against 2 databases.

FIG. 3B illustrates a graphical representation of Processor
1 dividing Task 1 vertically (Flowchart Box B); keeps Task
1.A.

FIG. 3C illustrates a graphical representation of Processor
1 dividing Task 1.A horizontally (Box C); keeps and begins
executing Task 1.A.1.

FIG. 3D illustrates a graphical representation of Processor
2 dividing Task 1.B vertically (Box B); keeps Task 1.B.A.

FIG. 3E illustrates a graphical representation of Processor
2 dividing Task 1.B.A horizontally (Box C); keeps and
begins executing Task 1.B.A.1.

FIG. 3F illustrates a graphical representation of Processor
1 completing Task 1.A.1 (Box D); marks it READY (Box
A).
FIG. 3G illustrates a graphical representation of Processor
2 completing Task 1.B.A.1 (Box D); marks it READY (Box
A).

FIG. 3H illustrates a graphical representation of Processor
1 completing Task 1.B.A.2 (Box D).

FIG. 31 illustrates a graphical representation of Processor
1 merging result for Task 1.B.A.2 with result for Buddy Task
1.B.A.1, thereby computing result for Parent Task 1.B.A
(Box E); marks Task 1.B.A READY since Buddy Task
1.B.B. is not READY.

FIG. 3] illustrates a graphical representation of Processor
2 completing Task 1.A.2 (Box D).

FIG. 3K illustrates a graphical representation of Processor
1 dividing Task 1.B.B horizontally (Box C); keeps Task
1.BB.1.
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FIG. 3L illustrates a graphical representation of Processor
2 merging result for Task 1.A.2 with result for Buddy Task
1.A.1, thereby computing result for Parent Task 1.A (Box E);
marking Task 1.A. READY, since its Buddy Task 1.B is not
ready.

FIG. 3M illustrates a graphical representation of Proces-
sor 1 completing Task 1.B.B.1 (Box D) marking it READY
(Box A) since Task1.B.B.2 is not READY.

FIG. 3N illustrates a graphical representation of Processor
2 completing Task 1.B.B.2 (Box D).

FIG. 30 illustrates a graphical representation of Processor
2 merging result for Task 1.B.B.1 with result for Buddy Task
1.B.B.2, thereby computing result for Parent Task 1.B.B.
(Box E).

FIG. 3P illustrates a graphical representation of when
Task 1.B.B’s Buddy Task 1.B.A is READY, Processor 2
merges result for Task 1.B.B. with result for Buddy Task
1.B.A., thereby computing result for Parent Task 1.B (Box
BE).

FIG. 3Q illustrates a graphical representation of when
Task 1.B’s Buddy Task 1.A is READY, Processor 2 merges
result for Task 1.B with result for Buddy Task 1.A, thereby
computing result for Parent Task 1 (Box E). This completes
the computation, since Task 1 is the Entire Task and has no
Buddy Task.

FIG. 4 is a timeline that corresponds to the examples of
FIGS. 3A through 3Q.

FIG. 5 is a graphical representation of the task division
and result merging operations for the example of FIGS. 3A
through 3Q.

FIGS. 6A and B contain graphical comparisons of the
performance of the sequence comparison method of the
invention running on between 2 and 11 computers, with the
performance of the NCBI BLAST program running on a
single computer of the same type.

DETAILED DESCRIPTION OF THE
INVENTION

1. Definitions

Virtual Shared Memory (VSM) allows applications to
share objects and process data across distributed networks,
such as local area networks. Commercially available pro-
grams, such as PARADISE® for the JAVA™ platform,
using the VSM concept, provide one or more network
“bulletin boards,” coordinate the processing of devices and
components on a network, and facilitate their communica-
tion. Other programs that provide such network bulletin
boards are well known in the art. A bulletin board may be
used to store data or computer instructions, including
descriptions of tasks to be executed or objects in a computer
language such as JAVA. Any of the computers operating in
parallel may access a VSM bulletin board by performing
various operations, such as placing data on the bulletin
board, examining data on the bulletin board, updating data
on the bulletin board, or removing information from the
bulletin board.

For example, in the instant method, a VSM bulletin board
may be used to store descriptions of searching tasks and
results of computations, such as the results of executing
searching tasks. This bulletin board allows search tasks to be
matched to the appropriate computer operating in parallel.
Whenever one of the computers operating in parallel
becomes idle, it will automatically check the bulletin board
and process any appropriate searching tasks it finds there.
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Sequence alignment is part of the process of comparing
sequences for similarity, and may include introducing phase
shifts or gaps into the query sequence or the sequences
contained in the databases being searched in order to maxi-
mize the similarity between the sequences. Global alignment
is the alignment of two sequences over their entire length,
and local alignment is the alignment of a portion of two
sequences.

The BLAST algorithm is a heuristic sequence similarity
searching algorithm. For a given plurality of input query
sequences and a given plurality of sequence databases,
BLAST seeks to find one or more HSPs (high scoring pairs),
each of which contains all or a portion of one sequence from
the plurality of input sequences and all or a portion of one
sequence from the plurality of sequence databases, such that
the locally optimal ungapped alignment between the two
members of said HSP achieves a score at least equal to a
specified integer minimum score value or an e-score lower
than a specified e-score threshold. Each such HSP will be
reported by BLAST in a list ordered from best scoring HSP
to worst scoring HSP, provided the total number of such
HSPs does not exceed a specified cutoff value for the
maximum number of descriptions and/or alignments to
report. In the event that the total number of such HSPs does
exceed said cutoff value, then BLAST truncates said list
after reporting the maximum permitted number of HSPs.

For each input query sequence, BLAST operates by first
finding one or more “words” (i.e., contiguous portions of a
sequence in the plurality of databases) having length equal
to a defined integer W (defaulted to W=3 in blastp), each of
which has a local ungapped alignment with the input query
sequence that achieves a score at least equal to a specified
integer T when scored with a specified substitution matrix.
Each such word is extended in both directions within the
sequence that contains it in an attempt to find a locally
optimal ungapped alignment between the input query
sequence and said sequence having a score at least equal to
the specified integer minimum score value or an e-score
lower than the specified e-score threshold. When such a
locally optimal ungapped alignment is found, BLAST forms
an HSP whose members are the aligned portions of the input
query sequence and said sequence from the plurality of
databases.

Scoring of sequence comparison results is the process of
quantitatively expressing the relatedness of one of the query
sequences to one of the sequences contained in the databases
being searched.

The raw score is the score of an alignment, or “S,”
calculated as the sum of substitution and gap scores.

The bit score, or S', is derived from the raw score, S, by
taking into account the statistical properties of the scoring
system used. As the bit scores have been normalized with
respect to the scoring system, they can be used to compare
alignment scores from different searches.

The e-score refers to the expectation value, which is the
number of different alignments with scores equivalent or
better than S that are expected to occur in a database search
by chance. The lower the e-score, the more significant is the
match.

The term sequence database or sequence databases means
a collection or collections of known sequences against
which the query sequence is compared. The database may be
a private database or publicly available. For example, pub-
licly available sequence databases are compiled and main-
tained by NCBI.

The term query sequence or query sequences means a
sequence or sequences to be compared to the sequences
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contained in the databases being searched. A query sequence
may be any biopolymer sequence of interest. For example,
the sequence may be an amino acid sequence, a nucleic acid
sequence, and the like.

A sequence in FASTA format begins with a single-line
description, followed by lines of sequence data. The descrip-
tion line is distinguished from the sequence data by a
greater-than (“>"") symbol in the first column. It is recom-
mended by NCBI that all lines of text be shorter than 80
characters in length. Query sequences in the FASTA format
are expected to be represented in the standard IUB/IUPAC
amino acid and nucleic acid codes.

A gap is a space introduced into an alignment to com-
pensate for insertions or deletions in one sequence relative
to another. The insertion of gaps causes the deduction of a
fixed amount, the gap score, from the alignment score, and
extension of the gap to encompass additional monomers of
the sequence is also penalized in the scoring of an alignment.

Substitution is the presence of a non-identical amino acid
at a given position in an alignment. A conservative substi-
tution is the substitution of an amino acid residue having
similar physicochemical properties. Substitution in an align-
ment search affects the score through the use of a substitu-
tion matrix, which contains values proportional to the prob-
ability that a given amino acid will mutate into a second
amino acid, for all pairs of amino acids.

II. Description of the Invention

The method and apparatus of the present invention allow
for high-speed, high precision sequence comparison search-
ing of one, two, three or more query sequences against one,
two, three or more sequence databases. The method is
implemented though the use of a group of computers oper-
ating in parallel, wherein the entire searching task to be
performed is broken up into smaller searching tasks that are
then processed by members of the group of computers
operating in parallel, i.e., the worker computers. Each of the
group of computers operating in parallel may be the same or
different, and each of the group may have the same or
different operating systems. In addition, if one of the com-
puters operating in parallel should fail, the correctness
and/or precision of the search results will not be affected.
The method and apparatus of the present invention are
independent of the searching program or algorithm used,
and can be used with any publicly available or private
database. Moreover, the search result generated, the unified
search result, is identical to a search result that would have
been generated if the searching task had not been partitioned
into smaller searching tasks.

Each worker computer may assign to itself which search-
ing tasks it will perform, and the partitioning of the query
sequences and the partitioning of the sequence databases to
create smaller searching tasks are done by each member of
the group of computers operating in parallel. Such partition-
ing is based on, for example, the processing capability of
each member of the group of computers operating in par-
allel, and may also be based on the total amount of process-
ing capacity of the group of computers operating in parallel
that can be used to perform the entire search task.

FIG. 1 is a flow chart providing an overview of an
example of an implementation of the method of the present
invention. Based on the teachings of the instant specifica-
tion, other implementations would be apparent to the ordi-
nary artisan. Initially, the entire job is a single large Task.
Multiple smaller Tasks are created by splitting large Tasks.
The new Tasks created by splitting a single Parent Task are
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called Buddy Tasks. The implementation depicted in FIG. 1
interleaves the processes of creating smaller searching tasks,
executing those tasks, and merging the results of the smaller
searching tasks to create the unified result of the entire
searching task. A VSM bulletin board independent of the
worker computers is used to store information about the
ongoing searching process. For example, a list of searching
tasks (the “Task List”) and a list of results of executing the
searching tasks (the “Result List”) may be stored on the
VSM bulletin board.

Initially, the list of searching tasks kept in the VSM
bulletin board (i.e., the Task List) contains a single task
representing the entire searching task. One or more worker
computers may concurrently examine the searching tasks in
the Task List. During the operation of the instant method,
each worker computer of the computers operating in parallel
may attempt to take (i.e., copy and remove, in an atomic
operation) a task from the Task List. The VSM system, such
as PARADISE® for the JAVA™ platform, ensures that each
task may be taken by at most one of the worker computers
that attempt to take a task. If there is an insufficient number
of tasks on the Task List to permit each worker computer
attempting to take a task to take at least one, then some of
the worker computers attempting to take a task from the
Task List may be forced to wait either until one or more
additional tasks are added to the Task List, or until a signal
to exit is received.

The execution of each searching task taken from the Task
List creates a corresponding result that is stored in the list of
search results kept in the VSM bulletin board (i.e., the Result
List). The entire searching task is complete when the Result
List contains exactly one result that is the result for the entire
searching task.

The execution of each searching task makes use of a
number of parameters, such as cut-off values, that control the
operation of the searching method (e.g., BLAST) and may
affect the results that are computed. For each searching task
taken from the task list, the instant method makes use of
exactly the same set of parameters as would have been used
for the entire searching task not using the apparatus and
method of the instant invention. As described below, this
enables the method to report a unified result for the entire
searching task that is identical to the result that would be
obtained if the apparatus and method of the instant invention
were not used. As also described below, the method and
apparatus of the instant invention, however, allow for super-
linear speedup in generating the sequence comparison result.

One or more worker computers may concurrently exam-
ine the results in the Result List. During the operation of the
instant method, one or more of the worker computers
operating in parallel may attempt to take (i.e., copy and
remove, in an atomic operation) a result from the Result List.
The VSM system ensures that each result may be taken by
at most one of the worker computers that attempt to take a
result. If there is an insufficient number of results on the
Result List to permit each worker computer attempting to
take a result to take at least one, then some of the worker
computers attempting to take a result from the Result List
may be forced to wait either until one or more additional
results are added to the Result List, or until a signal to exit
is received.

Execution of a searching task requires some quantity of
computational resources (e.g., memory, disk, CPU time,
etc.), and upon taking a task, a worker computer estimates
the quantity of computational resources required to execute
the task. This estimate is termed “RES(Task).” RES(Task) is
too large if it exceeds the resources available on the com-
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puter. If RES(Task) is too large for that particular worker
computer, the worker computer will divide the searching
task into two smaller searching tasks and add one of them to
the Task List kept in the VSM bulletin board. RES(Task)
will then be recalculated for the one of the two smaller
searching tasks retained by the worker computer. The two
smaller searching tasks that are the parts of the now-divided
searching task are termed “Buddies.” Each new smaller
searching task is marked as the other one’s Buddy, and the
original undivided task is marked as the “Parent” of each of
the two new smaller searching tasks.

Once a worker computer obtains a task for which RES
(Task) is not too large, it then estimates the fraction of the
remaining computational effort represented by the task,
termed GRAN(Task), and determines if it is too large.
GRAN(Task) is too large if it exceeds a defined constant
parameter times the ratio of the estimated computational
power of the worker computer in question to the estimated
total computational power of the aggregate of computers
that the worker computer in question believes to be operat-
ing in parallel at the current time. If GRAN(Task) is too
large, the worker computer goes through a similar process of
dividing the searching task into two smaller searching tasks
and retaining one of them as is performed when RES(Task)
is too large.

Once the worker computer has a searching task for which
neither RES(Task) or GRAN(Task) is too large, it executes
the searching task and computes the result for that searching
task. The searching task may be executed using any desired
algorithm, such as the BLAST algorithm. The searching task
is termed the worker computer’s “Present Task,” and the
computed result is termed the worker computer’s “Present
Result.” Executing Task creates the corresponding Present
Result.

The worker computer then performs an examination of its
Present Task and Present Result to decide what to do next.
First, the worker computer determines whether its Present
Task is the entire searching task. To do this, the worker
computer looks at the VSM bulletin board to determine
whether its Present Task has a Buddy Task. If its Present
Task has no Buddy Task, then its Present Task is the entire
searching task, and its Present Result is the final result for
the entire searching task. In such a case, the worker com-
puter adds its Present Result to the Result List kept in the
VSM bulletin board, which will then contain exactly one
result (i.e., the result for the entire searching task). At that
point, the entire searching task is complete, and the worker
computer then signals any waiting worker computers to exit.

If the worker computer’s Present Task does have a Buddy
Task, then the worker computer attempts to create a unified
result for the Parent Task of its Present Task. The worker
computer first looks at the VSM bulletin board to determine
if the Buddy Task’s result is READY, for example by
searching for that result on the Result List kept in the VSM
bulletin board. If it is not READY, the worker marks its
Present Result as READY and adds it to the Result List kept
in the VSM bulletin board. The worker computer then
selects and executes another searching task if one is avail-
able on the Task List kept in the VSM bulletin board. If none
is available, it waits either for a searching task to be added
to the Task List, or for the signal to exit. Thus each of the
group of computers operating in parallel may perform one,
two, or more searching tasks during the operation of the
instant method.

If the Buddy Task’s result is READY, then it will be on
the Result List kept in the VSM bulletin board. The worker
computer then takes the Buddy Task’s result from the Result
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List and merges its Present Result with the Buddy Task’s
result to produce a unified result for the Parent Task of its
Present Task (which is also the Parent Task of the Buddy
Task). The worker computer then discards information about
its Present Task, the Buddy Task, its Present Result, and the
Buddy Task’s result. The worker computer then designates
the Parent Task as its Present Task, and the Parent Task’s
unified result as its Present Result.

The worker computer then goes through similar exami-
nation and subsequent processing steps for its new Present
Task and Present Result (which were previously known as
the Parent Task and the Parent Task’s unified result) as it did
for its previous Present Task and previous Present Result.
This examination and merging process is reiterated until
either the worker computer determines that it has formed, as
its then Present Result, the final result for the entire search-
ing task, or the worker computer finds that the result of the
Buddy Task of its then Present Task is not yet READY.

In the former case, the worker computer places its Present
Result on the Result List kept in the VSM bulletin board,
which will then contain exactly one result (i.e., the final
result for the entire searching task). At that point, the entire
searching task is complete, and the worker computer then
signals any waiting worker computers to exit.

In the latter case, the worker computer marks its then
Present Result as READY and adds it to the Result List kept
in the VSM bulletin board. It then selects and executes
another searching task if one is available on the Task List
kept in the VSM bulletin board. If none is available, it waits
either for a searching task to be added to the Task List, or for
a signal to exit.

Eventually, the reiteration of the task selection/execution
and result merging processing will cause all of the searching
tasks to be selected and executed, and all of the computed
task results to be merged together to form a single, unified
result for the entire searching task. Thus, the method will
produce the correct result for the entire searching task.

FIGS. 2A, 2B, 3A through 3Q, 4, and 5 demonstrate in
more detail how the entire searching task is divided up into
smaller searching tasks to be performed by each of the
computers operating in parallel. FIG. 6 contains several
charts that illustrate the performance of the method of the
present invention in comparison with a standard execution
of NCBI BLAST on a single computer of the same speed as
the worker computers used for the method. As is evident
from the charts, a substantial, superlinear speedup may be
achieved using the method.

As illustrated in FIGS. 2A and 2B, the entire searching
task to be performed may be represented by a rectangle, with
the horizontal representing the one or more databases
against which the query sequences are to be compared, and
the vertical representing the query sequences themselves.
Any sequence database may be used, such as the sequence
databases derived from the databases maintained by the
National Center for Biotechnology Information (NCBI).
FIG. 2A illustrates a representation of one Task searching a
single sequence against 2 databases. FIG. 2B illustrates a
representation of one Task searching 3 sequences against 2
databases.

The length of the rectangle’s horizontal can be correlated
to RES(Task), or the estimated quantity of computational
resources required to execute the task. For efficient opera-
tion, it is only necessary for RES(Task) to estimate the
quantity of the most important computational resources
required to execute the task. For BLAST, RES(Task) should
estimate the amount of memory required to execute the task,
since the memory is the most critical computational resource
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for BLAST. The memory requirement for BLAST is largely
dependent on the size of the sequence database or portion
thereof that is to be searched. Thus, one possible estimate for
RES(Task) is equal to the sum of the length of the largest
query sequence or portion thereof in the task plus the total
length of the sequences in the database or portion thereof, all
in FASTA format, times 1.2.

If RES(Task) is too large, a vertical boundary is defined
between individual databases or within a database, such as
a boundary that most evenly divides the large rectangle
representing the undivided searching task into two smaller
rectangles. This introduction of a new vertical boundary is
illustrated, for example, in FIG. 3B, where the boundary is
introduced between two databases. This process may allow
for rearrangement of databases along the horizontal in order
to create a more even division without defining a boundary
within a database, or in order to enable a worker computer
to create searching tasks that use databases already stored in
the memory of the worker computer in question.

The method also allows for the individual databases
themselves to be split up to permit creation of searching
tasks for which RES(Task) is not too large for a given
worker computer. This is illustrated in FIG. 3D. Preferably,
the databases are split at defined positions, such as in half,
in quarters, etc., so that the results computed for each
individual searching task may be more easily merged to
provide the unified result. This is not, however, a require-
ment of the method.

The vertical of the rectangle in FIGS. 2A and 2B can be
correlated to the relative duration of the task in question,
where the duration of any searching task may be measured,
for example, by the time in seconds required to execute the
searching task with the particular query sequences and the
database or portion thereof. The relative duration of the task
in question is then equal to the fraction of the duration of the
undivided entire searching task represented by the duration
of the task in question.

The first division of the searching task using the estimate
of RES(Task), i.e., along the horizontal, splitting up the
databases, is related to the quantity of computational
resources, such as memory, available on the worker com-
puter. The second division of the searching task, i.e., along
the vertical, by splitting up the query sequences, as illus-
trated in FIG. 3C, is related to the estimated relative duration
of the searching task. In order to obtain the largest possible
speedup, the method tries to ensure (1) that executed search-
ing tasks are small enough, i.e., of sufficiently short relative
duration, so that there will be enough tasks to fully occupy
all of the worker computers available for the entire searching
task, and (2) that executed searching tasks are large enough,
i.e., of sufficiently long duration, that the amount of over-
head related to the use of parallelism (i.e., the costs related
to communication, access to the VSM, and task startup or
shutdown on the individual worker computers) are small
enough that the overall method is efficient. By ensuring
these two properties, the method is able to achieve linear
speedup attributable to the full and efficient use of all of the
worker computers available to perform the entire searching
task. In practice, however, the method often achieves super-
linear speedup because the divisions based on RES(Task)
reduce the amount of I/O overhead, which leads to addi-
tional speedup beyond the linear speedup that would be
expected normally.

In order to perform the second type of division, i.e., along
the vertical, by splitting up the query sequences, the method
makes use of an estimate of the granularity of the task. The
granularity of a task relates (1) the fraction of the duration
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of the undivided entire searching task represented by the
task at hand, to (2) the fraction of the total available
computational processing capacity represented by the
worker computer in question. The computational processing
capacities of the computers may be estimated in various
ways, for example, by estimating their speeds (measured, for
example, in residues or bases searched per second). The
method does not require that any specific estimation tech-
nique be used.

The fraction of the duration of the undivided entire
searching task represented by the task at hand can be
estimated by:

r
T

where:

t is the estimated duration of the particular searching task
at hand when executed on the worker computer, ignoring
any effects due to limited amounts of memory; and

T is the estimated duration of the undivided entire search-
ing task when executed on the worker computer, ignoring
any effects due to limited amounts of memory. Since the
computed quantity is a ratio of durations, it does not matter
what computer is used as a reference for estimating the
durations, since properties of the reference computer, such
as its speed, will not affect the ratio.

The fraction of the total computational processing capac-
ity represented by the worker computer in question can be
estimated by:

vl

where:

p is the estimated processing capacity of the worker
computer in question; and

P is the estimated aggregate processing capacity of all of
the worker computers believed by the worker computer in
question to be available to perform the remaining incom-
plete searching tasks.

The granularity of the task can then be estimated by:

r
GRAN(Task) = = / 11;

In order to obtain the largest possible speedup, the method
tries to ensure that GRAN(Task) satisfies:

¢ >GRAN(Task)>c,

where:

¢, and ¢, are user defined tuning constants. For example,
¢, and ¢, may be defined as 0.5 and 0.25, respectively.

If GRAN(Task) is too large, the query sequences are
divided into two parts so that the corresponding searching
tasks that result have nearly equal values of GRAN(Task). If
required, each individual query sequence may be divided
into smaller query subsequences.

The method allows that if GRAN(Task) is too small, the
task at hand may be increased in size. This may be done, for
example, by combining the task at hand with another task on
the Task List.
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For each sequence database or portion thereof created by
the task division process just described, a counter is kept in
the VSM bulletin board of the number of remaining incom-
plete searching tasks that reference that sequence database
or portion thereof. Whenever a worker computer has an
opportunity to select a new searching task, it will, if pos-
sible, “fixate” by selecting a task that searches the same
database or portion thereof as its just-completed task,
because that database or portion thereof is already loaded
into the worker computer’s memory. This reduces /O over-
head and improves performance greatly. Initially, each
worker computer chooses a database or portion thereof on
which to fixate using a weighted random variable so that the
chance of choosing a particular database or portion thereof
depends on the frequency of that database’s representation
in all remaining incomplete searching tasks. Once a worker
has chosen a database or portion thereof, it will only take
tasks that reference that database or portion thereof, subject
to the following two limitations:

(1) If there is no task on the Task List that references that
database or portion thereof, the worker will wait idle
for a short time (“t;,,.”), and then, if there is still no
such task on the Task List, the worker will repeat the
database selection process, undoubtedly deciding to
fixate on a new database or portion thereof; and

(2) After remaining fixated for a certain time span (the
“quantum”) the worker will repeat the database selec-
tion process, most likely deciding to fixate on a differ-
ent database or portion thereof.

The user of the method can specify the values of both t, ;,,
and the quantum. An example of appropriate settings would
be 10 seconds for t,,, and 30 minutes for the quantum.

Limitation (1) is designed to ensure that no worker
computer remains idle for a long time waiting for tasks
referencing a particular database or portion thereof, this
could happen without the limitation if all such tasks had
been executed. Limitation (2) is designed to ensure that the
worker computers in aggregate are spread reasonably uni-
formly across all incomplete searching tasks.

The final result of the method is a unified search result for
the entire searching task. As when using any sequence
alignment algorithm, such as BLAST, the result is a list of
the zero, one, two or more sequences (termed “hits”) from
the database or databases that have the greatest similarity to
the query sequence or query sequences. Typically, each hit
in the list is reported along with a numerical score that
corresponds to the degree of similarity between the hit and
one or more of the query sequences. In that case, the list of
hits may be ordered by either decreasing value of the raw
score of each hit or increasing value of the normalized
e-score of each hit.

The user may define “cut-offs” to limit the number of hits
included in the output for the entire searching task. For
example, the user can limit the absolute number of hits or
can specify threshold values on the size of the raw score or
the e-score for each reported hit.

The method allows for various ways of computing the
unified result for the entire searching task from the results
for each of the smaller searching tasks created using the
division processes described above. For example, all of the
results for the smaller searching tasks could be collected by
one of the worker computers operating in parallel, and one
of' the results could be designated as that worker computer’s
Present Result. The worker computer in question could then
build the unified result for the entire searching task by
reiterating a process of pairwise merging in which one of the
results for the smaller searching tasks is merged with the
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worker computer’s Present Result. When all of the results
for the smaller searching tasks have been merged with the
worker computer’s Present Result, that Present Result will
be the unified result for the entire searching task.

As noted above, FIG. 1 is a flowchart depicting an
example of implementing the instant method, which inter-
leaves the processes of task division, task execution, and
creation of the unified result for the entire searching task.
This implementation of the creation of the unified result for
the entire searching task may be more efficient than the
simple implementation just described because it involves
less overhead related to the use of the VSM bulletin board.
The detailed example of FIGS. 3 A through 3Q illustrate the
sequence of task divisions and result mergings that might be
achieved by the method using the implementation of FIG. 1.

Whichever of the implementations is used to create the
unified result for the entire searching task from the results of
the smaller searching tasks, the computation is performed as
a sequence of pairwise result merges. In each one, a new
result is created by merging two existing results using a
three-step process:

(1) First, the sequence hits in the old results are inter-

leaved in order of decreasing raw score;

(2) Next, the e-score for each of the sequence hits is

adjusted as described below; and

(3) Last, any cut-offs used to limit the number of sequence

hits reported for each searching task are applied to limit
the number of sequence hits reported in the new result.

In Step (2) of this process, it may be necessary to
recalculate the e-scores to take into account the partitioning
of'the sequence database or databases, so that the results that
are reported are the same as if the entire searching task had
never been broken up into smaller searching tasks. If each of
the existing results corresponds to searching tasks referenc-
ing the same databases or portions thereof, then no recal-
culation is required, and the e-score reported for each
sequence hit in the new result will be the same as the one
reported in one or both of the existing results for the same
sequence hit. If, however, the existing results correspond to
searching tasks referencing different databases or portions
thereof, the e-scores must be recalculated. If the letters B and
C represent two different databases, the number of letters in
database B can be represented by B', and the number of
letters in database C can be represented by C'. Then the
e-score for each sequence hit in database B is recomputed
using the following formula:

B +C

€SCOTepey = €SCOTeoyig * T

Similarly, the e-score for each sequence hit in database C
is recomputed using the following formula:

B +C
C/

€SCOTepey = €SCOTeoyig *

As noted earlier, users often make use of cut-offs to limit
the number of sequence hits reported by search methods
such as BLAST. The instant method intends to produce
essentially the same result (i.e., exactly the same result, up
to minor reorderings or variations due to limitations of
computer floating-point arithmetic) for the entire searching
task as would have been reported without division into
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smaller searching tasks. To do this, the method must prop-
erly apply the same user-specified cut-offs.

Executing a searching task has the effect of implicitly
creating an internal list of sequence hits ordered by decreas-
ing raw score. Cut-offs limit the number of sequence hits
included in the result for the searching task by discarding all
but the best sequence hits from the internal list. For example,
a cut-off might limit the number of hits to an absolute
number of the best ones, or it might limit the hits to those
with raw score exceeding some threshold or those with
e-score below some threshold. In all cases, the particular set
of sequence hits that survive the cut-off may depend on the
relative ordering of the sequence hits in the internal list.
Note that except for random reorderings or minor variations
due to the limited accuracy of computer floating-point
arithmetic, the internal list would be unchanged if it were
ordered by increasing e-score instead of decreasing raw
score.

Now consider any sequence hit that survives the applica-
tion of cut-offs for the undivided entire searching task, i.e.,
the entire searching task as executed by the original BLAST
method without division into smaller searching tasks. That
hit is in one of the databases referenced by the entire
searching task, and it must have survived the cut-offs
because its achieved raw score, when compared to some one
of the query sequences in the entire searching task (termed
the “matching query sequence”), was sufficiently high rela-
tive to the raw scores of other hits.

The division process described above guarantees that at
least one of the smaller searching tasks generated by the
instant method must:

(1) reference a subdatabase of the databases referenced in
the entire searching task that contains the sequence hit
in question; and

(2) include the matching query sequence among its query
sequences.

Certainly, the matching query sequence will be compared
to the sequence hit in question during the execution of this
particular smaller searching task. Since raw scores depend
only on the particular pair of sequences compared, it is clear
that the sequence hit in question will achieve a raw score for
the smaller searching task that is equal to the raw score
reported for the undivided entire searching task. Moreover,
since the one or more subdatabases referenced by the
smaller searching task in question form, in aggregate, a
subset of the databases referenced by the undivided entire
searching task, the subdatabases will contain no more high
quality sequence hits than the aggregation of databases
referenced by the undivided entire searching task. Hence,
the sequence hit in question will be no further from the
beginning of the internal ordered list for the smaller search-
ing task in question than it is in the internal ordered list for
the undivided entire searching task. Therefore, since the
sequence hit in question survives the cut-offs in the undi-
vided entire searching task, it must also survive the same
cut-offs in the smaller searching task.

This argument demonstrates that each sequence that sur-
vives the cut-offs for the undivided entire searching task also
survives the cut-offs for at least one of the smaller searching
tasks created by the instant method provided that the same
cut-offs are applied to those tasks. In order to demonstrate
that such a sequence also appears in the final result com-
puted by the instant method, it is necessary to verify that
Step (3) in the above process for result merging never
eliminates the sequence.

Suppose that the two old results being merged contain all
of the sequences meeting the cut-offs for the corresponding
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smaller searching tasks. By the fact that it interleaves based
on raw score, it is clear that the interleaving performed in
Step (1) produces a list of sequence hits in which, except for
some potential random reordering of hits with equal scores,
the sequence hits are in the same relative ordering (by
decreasing raw score) as they are in the internal list for the
undivided entire searching task. The effect of applying a
cut-off to the interleaved list then depends on the type of
cut-off. If the cut-off limits the number of sequence hits to
some absolute maximum number, then taking that absolute
maximum number of sequences from the beginning of the
interleaved list is guaranteed to be sufficient to permit
eventual creation of the proper result for the entire searching
task. At worst, later merging steps will discard some of the
included sequences in favor of others with higher scores.

If the cut-off limits the sequence hits based on a raw score
threshold, then it is sufficient to include any sequence hit
from the interleaved list that has a raw score equaling or
exceeding the threshold raw score. Since each of the two old
results now being merged already contains all of the
sequence hits from the corresponding smaller searching task
that meet the raw score threshold criterion, it is clear that the
new merged result will do so as well, and that further merges
used to create the unified result for the entire searching task
will pass these sequence hits on to the unified result.

If, instead, the cut-off limits the sequence hits based on an
e-score threshold, then it is sufficient to include any
sequence hit from the interleaved list that has an e-score no
greater than the threshold raw score. According to the
formulae used to adjust the e-scores in Step (2), merging
steps may increase, but will never reduce, the e-score for any
particular sequence hit. Therefore, no sequence hit in the
interleaved list that is excluded by the cut-off (because its
e-score is too large) will ever achieve an e-score that is small
enough to pass the cut-off test. Similarly, none of the
sequence hits eliminated by the cut-off in an earlier merging
step could possibly meet the cut-off test at this stage of
merging.

As aresult of the above analysis, it appears that the instant
method does, in fact, produce essentially the same result
(i.e., exactly the same result, up to minor reorderings or
variations due to limitations of computer floating-point
arithmetic) for the entire searching task as would have been
reported by ordinary BLAST without division into smaller
searching tasks.

1I. EXAMPLES
A. Example 1

FIGS. 3A through 3Q provide a detailed example of the
application of the method of the instant invention using the
implementation of FIG. 1. Each of FIGS. 3A through 3Q
shows the representation of the entire searching task at a
particular time point during a sample operation of the
method of the invention when run on two processors. In
addition to the representation of the tasks, FIGS. 3A through
3Q also show the contents of 2 important lists on the bulletin
board (i.e., the Task List and the Result List) and indicates
the current activities for each of the two participating
processors at the corresponding instant of time. The Entire
Task is “Task 1”. Tasks created by splitting larger divisions
are denoted by names using dotted notation in which either
the Parent Task’s name is extended with a period (“.”)
followed either by a capital letter or an Arabic numeral.
Capital letters are used when vertical splitting is performed
based on RES(Task), as when Task 1.A and Task 1.B denote
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the two tasks created by subdividing Task 1. Arabic numer-
als are used when horizontal splitting is performed based on
GRAN(Task), as when Task 1.A.1 and Task 1.A.2 denote the
two tasks created by subdividing Task 1.A. The computation
in question entails the searching of a group of query
sequences against two databases using two processors (i.e.,
worker computers). Each of FIG. 3A through FIG. 3Q is a
representation of the state of the computation at a particular
instant in time. (FIG. 4 contains timelines showing the
activities of the processors between the time points that
correspond to the subfigures. FIG. 4 also contains lettered
markings that correlate to FIGS. 3A through 3Q to their
specific points in time during the computation.) The proces-
sor activities are correlated with FIG. 4, which illustrates the
details of the processor activity and includes a time line that
is correlated to FIGS. 3A through 3Q.

Each of FIGS. 3A through 3Q contains four sections
reflective of the states of the searching task, the processors
and the VSM bulletin board at the time point in question:

(1) A rectangular representation similar to those of FIGS.
2A and 2B that represents the entire searching task as
subdivided into smaller searching tasks at the time
point in question;

(2) An illustration of the Task List and the Result List
stored in the VSM bulletin board at the time point in
question;

(3) A textual description of the present activities of the
worker computers at the time point in question; and

(4) A caption describing the current state of the searching
task(s) and the change(s) from the previous subfigure.

The Legend included in FIGS. 3A through 3Q describes
the graphical markings and the Task naming conventions
used in the example. Similar markings are used in FIGS. 4
and 5, as well.

FIGS. 3 A through 3Q illustrate the most important opera-
tions in the method using the implementation of FIG. 1:

(1) FIGS. 3B and 3D illustrate the division of tasks by
dividing and/or rearranging one or more databases (i.e.,
represented as the introduction of a new vertical bound-

ary).

(2) FIGS. 3C, 3F and 3K illustrate the division of tasks by
dividing the query sequences (i.c., represented as the
introduction of a new horizontal boundary).

(3) FIGS. 3F, 3G and 3M illustrate the result of executing
a task which has a Buddy Task that is not READY.

(4) FIGS. 31 and 3L illustrate the case of performing a
single merging step that leads to a unified task for
which no further unification is possible until other tasks
have been completed. (Such tasks are marked as
READY and placed on the Result List in the VSM
bulletin board.)

(5) FIGS. 30, 3P, and 3Q illustrate the case of repeated
hierarchical merges that eventually lead to the final
result for the entire searching task.

FIG. 4 contains timelines that illustrate the activities
carried out on each of two processors during application of
the method of the invention to compute the result of the
entire searching task as illustrated in FIGS. 3A through 3Q.
The markings for each activity are described below. In this
figure, the fill pattern for each activity reflects the type of
activity. The time scale does not represent actual time, but is
intended to portray possible relative times at which various
activities might take place. The time scale is consistent with
the details of FIGS. 3A through 3Q and with a possible
operation of actual computer software implementing the
method. The timelines are correlated with FIGS. 3 A through

3Q.



US 7,333,980 B2

19

To complete the picture of the example of FIGS. 3A
through 3Q, FIG. 5 illustrates the task division and result
merging operations using a binary tree representation. In
FIG. 5, each division of a searching task into two smaller
searching tasks is represented by a single white rectangle
(representing the searching task to be divided) containing
two outward-pointing arrows, each of which leads to a
smaller white rectangle representing one of the two smaller
searching tasks. The parenthesized letters refer to FIGS. 3A
through 3Q. Task names also refer to the names used in
FIGS. 3A through 3Q. Analogously, the creation of a unified
result for a Parent Task by merging the computed results of
two Buddy Tasks is represented by two gray rectangles (the
Buddy tasks) connected by outward-pointing arrows to a
single larger gray rectangle (the Parent task). As with the
other figures, FIG. 5 contains lettered markings to correlate
it with FIGS. 3A through 3Q.

B. Example 2

The example shown here provides a simple demonstration
of the performance achievable with the invention. The
example search task is specified as follows:

Query Sequences: 50 Expressed Sequence Tags (ESTs)
totaling 18,500 DNA bases;

Databases: 3 separate databases downloaded from NCBI
as follows:

NCBI Database Sequences DNA Bases (Approx.)
Drosophila 1,170 123 million
GSS Division of Approx. 1.27 million 651 million
GENBANK

E-coli 400 4.6 million

The benchmark example was run on a group of IBM
Netfinity PCs, each containing a single 500-Megahertz
Pentium III processor, 512 Kilobytes of cache memory, and
256 Megabytes of main memory. The PCs were connected
on a switched 100 Megabit Ethernet network. All searches
were made using the blastn variant of BLAST using the
default set of BLAST parameters. The baseline BLAST was
performed using the command:

blastall-d “ecolint gss drosophila”p blastn which
required a time of 2131.8 seconds on one computer.

The table below shows the timing results obtained with
varying numbers of worker computers. The “Speedup” is
calculated as the ratio between the baseline time and the time
using the method with the specified number of worker
computers. Since the results clear show that the speedup
using n worker computers may be greater than n, these
results demonstrate the possibility of superlinear speedup
with the method of the invention.

Time
Worker Computers (seconds) Speedup
1 1011.0 2.11
2 646.0 3.30
3 393.0 5.42
4 259.5 8.22
5 218.0 9.78
6 191.7 11.12
7 171.0 1247
8 167.3 12.74
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-continued
Time
Worker Computers (seconds) Speedup
9 161.0 13.24
10 151.0 14.12
11 130.0 16.40

The times and speedup values are plotted in FIGS. 6(a)
and 6(b).

Although the present invention has been described in
detail with reference to the example above, it is understood
that various modifications can be made without departing
from the spirit of the invention. Accordingly, the invention
is limited only by the following claims. All cited patents,
patent applications, and publications referred to in this
application are herein incorporated by reference in their
entirety.

What is claimed is:

1. A computer-implemented method of searching a plu-
rality of queries against at least one database containing a
plurality of records, comprising the steps of:

a. partitioning the plurality of queries into a set of smaller

subsets of queries;

b. partitioning the at least one database into a set of
smaller subdatabases;

c. designating searching tasks to be performed by asso-
ciating each of said subsets of queries with one or more
of said subdatabases, assigning each searching task to
one of a group of computers operating in parallel,
wherein each member of the group of computers oper-
ating in parallel has at least one searching task assigned
thereto, and executing at least some of the assigned
searching tasks using the group of computers operating
in parallel; and

d. collecting search results from the executed searching
tasks and generating a unified search result in accor-
dance with the collected search results;

wherein the partitioning of the queries and the partitioning
of the database are done by one or more members of the
group of computers operating in parallel; and

wherein step ¢ further comprises dividing at least one of
the searching tasks into two or more smaller searching
tasks, and designating the two or more smaller tasks as
related tasks on a virtual shared memory bulletin board.

2. The computer-implemented method of claim 1,
wherein the partitioning of the queries and the partitioning
of the database are based on the processing capacity of each
member of the group of computers operating in parallel.

3. The computer-implemented method of claim 1,
wherein each member of the group of computers operating
in parallel assigns to itself which searching tasks it will
perform.

4. The computer-implemented method of claim 1,
wherein the plurality of queries are searched against two or
more databases.

5. The computer-implemented method of claim 4,
wherein at least one database is not split into a set of smaller
databases.

6. The computer-implemented method of claim 1,
wherein at least one of the group of computers operating in
parallel performs two or more searching tasks during execut-
ing of the searching tasks in step (c).

7. The computer-implemented method of claim 6,
wherein when one of the members of the group of computers
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operating in parallel finishes a searching task, it assigns to
itself another searching task during executing of the search-
ing tasks in step (c).

8. The computer-implemented method of claim 1,
wherein all of the assigned searching tasks are performed by
the group of computers operating in parallel.

9. The computer-implemented method of claim 1,
wherein each member of the group of computers operating
in parallel is identical.

10. The computer-implemented method of claim 1,
wherein at least two members of the group of computers
operating in parallel are different.

11. The computer-implemented method of claim 1,
wherein each member of the group of computers operating
in parallel has the same operating system.

12. The computer-implemented method of claim 1,
wherein at least two members of the group of computers
operating in parallel have different operating systems.

13. The computer-implemented method of claim 1,
wherein failure of one or more of the members of the group
of computers operating in parallel does not affect the cor-
rectness of the search results.

14. The computer-implemented method of claim 1,
wherein during execution of each assigned task in step (c),
a numerical raw score is reported as part of the search result
associated with such task, wherein the numerical raw score
corresponds to a quantitative measure of a match between
the query and the database.

15. The computer-implemented method of claim 1,
wherein production of the unified search result shows
speedup.

16. The computer-implemented method of claim 1,
wherein the collecting of the search results and the gener-
ating of the unified search result are performed by a single
computer.

17. The computer-implemented method of claim 1,
wherein the collecting of the search results and the gener-
ating of the unified search result are performed by multiple
members of the group of computers operating in parallel.

18. The computer-implemented method of claim 1,
wherein the collecting of the search results and the gener-
ating of the unified search result of step (d) is performed by
interleaving the search results from the executed searching
tasks on the basis of numerical raw scores generated during
the executed searching tasks.

19. The computer-implemented method of claim 1,
wherein the total

search to be performed is represented by a rectangular

array, wherein each search task assigned to one of the
group of computers operating in parallel is represented
by adjacent rectangles making up the array, and
wherein the total size of the array corresponds to the
total search to be performed.

20. The computer-implemented method of claim 19,
wherein each column of the array represents one of the
sub-databases and each row of the array represents one or
more queries.

21. The computer-implemented method of claim 20,
wherein a width of at least one column of the array corre-
sponds to a group of one or more sub-databases that can
simultaneously be held in memory in one of the group of
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computers operating in parallel performing one of the
searching tasks associated with that column of the array.

22. An apparatus for performing a computer-implemented
method of searching a plurality of queries against at least
one database containing a plurality of records, comprising:

a. means for partitioning the plurality of queries into a set
of smaller subsets of queries;

b. means for partitioning the at least one database into a
set of smaller subdatabases;

c. means for designating searching tasks to be performed
by associating each of said subsets of queries with one
or more of said subdatabases;

d. means for dividing at least one of the searching tasks
into two or more smaller searching tasks, and desig-
nating the two or more smaller tasks as related tasks on
a virtual shared memory bulletin board;

e. means for assigning each searching task to one of a
group of computers operating in parallel, wherein each
member of the group of computers operating in parallel
has at least one searching task assigned thereto;

f. means for executing at least some of the assigned
searching tasks using the group of computers operating
in parallel;

g. means for collecting search results from the executed
searching tasks; and

h. means for generating a unified search result in accor-
dance with the collected search results;

wherein the means for partitioning of the queries and the
means for partitioning of the database comprise one or
more members of the group of computers operating in
parallel.

23. The apparatus of claim 22, wherein each member of

the group of computers operating in parallel is identical.

24. The apparatus of claim 22, wherein at least two
members of the group of computers operating in parallel are
different.

25. The apparatus of claim 22, wherein each member of
the group of computers operating in parallel has the same
operating system.

26. The apparatus of claim 22, wherein at least two
members of the group of computers operating in parallel
have different operating systems.

27. The apparatus of claim 22, further comprising means
for compensating for failure of one or more of the members
of'the group of computers operating in parallel, wherein said
failure does not affect the correctness of the search results.

28. The apparatus of claim 22, wherein the means for
executing at least some of the assigned search tasks further
comprises means for reporting a numerical raw score as part
of the search result associated with such task, wherein the
numerical raw score corresponds to a quantitative measure
of a match between the query and the database.

29. The apparatus of claim 22, wherein the means for
collecting of the search results and the means for generating
of the unified search result of step comprises means for
interleaving the search results from the executed searching
tasks on the basis of numerical raw scores generated during
the executed searching tasks.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,333,980 B2 Page 1 of 1
APPLICATION NO. : 10/700071

DATED : February 18, 2008

INVENTORC(S) : Robert D. Bjornson

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page item [57] ABSTRACT, line 5, please delete “partioned™ and insert -- portioned --.

At column 21, lines 48-53, insert -- search to be performed... -- after “total” as a continuation of the
paragraph.

Signed and Sealed this

Twenty-third Day of November, 2010

David J. Kappos
Director of the United States Patent and Trademark Office



