a9 United States

Garaventa

US 20110197124A1

a2y Patent Application Publication o) Pub. No.: US 2011/0197124 A1l

43) Pub. Date: Aug. 11, 2011

(54)

(76)

@

(22)

(60)

(1)

AUTOMATIC CREATION AND
MANAGEMENT OF DYNAMIC CONTENT

Inventor: Bryan Eli Garaventa, Pacifica, CA
us)

Appl. No.: 13/020,937

Filed: Feb. 4,2011

Related U.S. Application Data
Provisional application No. 61/301,636, filed on Feb.

5,2010.

Publication Classification

Int. Cl1.
GO6F 17/00
GO6F 3/048

(2006.01)
(2006.01)

(CZ R VR & R 715/234
(57) ABSTRACT

A computer implemented method and system for creating and
managing dynamic content on a web page is provided. An
application programming interface that interacts with a user’s
browser application is provided. The browser application
comprises multiple document objects contained in a docu-
ment object model. A user input triggers retrieval of one or
more dynamic content objects on the web page. The applica-
tion programming interface dynamically retrieves the
dynamic content objects from local and/or remotely hosted
memory locations. The application programming interface
updates the document object model using the retrieved
dynamic content objects. The retrieved dynamic content
objects define the document objects in the document object
model. The application programming interface dynamically
renders the retrieved dynamic content objects onto the web
page from the document objects contained in the updated
document object model. The application programming inter-
face updates functionality of the rendered dynamic content
objects on the web page at runtime.

/- 200

APPLICATION PROGRAMMING INTERFACE

OBIJECT RETRIEVAL 204a
MODULE
OBIJTICT UPDATING 204b
MODULE
OBJECT RENDERING 204c
MODULE
FUNCTION UPDATING 2044
MODULLI

206
204
_ USER
205 201| DYNamIC
/ p CONTENT
BROWSTIR OBIECTS
APPLICATION
MEMORY 204e
MANAGEMENT MODULT
- . } 204f
GUIDELINE
CONFORMANCE | /
MODULT 203
204g
CONTENT OBJICT NETWORK
ACCLSSIBILITY J -))
MODULILL A

Patent Application Publication = Aug. 11,2011 Sheet 1 of 18 US 2011/0197124 A1

PROVIDE AN APPLICATION PROGRAMMING INTERFACE THAT

INTERACTS WITH A USER’S BROWSER APPLICATION WHICH 101

COMPRISES MULTIPLE DOCUMENT OBJECTS CONTAINED IN A
DOCUMENT OBJECT MODEL

A
TRIGGER RETRIEVAL OF ONE OR MORE DYNAMIC CONTENT OBJECTS 102

A

103
DYNAMICALLY RETRIEVE ONE OR MORE DYNAMIC CONTENT
OBIJECTS FROM LOCAIL AND/OR REMOTELY HOSTED MEMORY
LOCATIONS
Y 104
UPDATE THE DOCUMENT OBIECT MODEL OF THE BROWSER
APPLICATION USING THE RETRIEVED DYNAMIC CONTENT OBIECTS
; 105
DYNAMICALLY RENDER THE RETRIEVED DYNAMIC CONTENT
OBJECTS ONTO THE WEB PAGE FROM THE DOCUMENT OBIJECTS
CONTAINED IN THE UPDATED DOCUMENT OBJECT MODEL
A
106

UPDATE FUNCTIONALITY OF THE RENDERED DYNAMIC CONTENT
OBIJECTS ON THE WEB PAGE AT RUNTIME

FIG. 1

Patent Application Publication Aug. 11,2011 Sheet 2 of 18 US 2011/0197124 A1

/ 200

206
204
USER J
- 205 201| DpYNAMIC
APPLICATION PROGRAMMING INTERFACE J CONTENT
BROWSER OBJECTS
APPLICATION
OBITCT RETRIGVAL | 2042 MEMORY 204e
MODUIT MANAGEMENT MODUT T
204f
OBJECT UPDATING 204b GUIDELINE
MODULFE J CONFORMANCE j
MODULE 203
[204c 204,
OBJECT RENDERING CONTENT OBJECT g NETWORK
MODULE ACCESSIBILITY /
MODULE A
FUNCTION UppaTiNG | 204d
MODULE

FIG.2

Patent Application Publication

Aug. 11,2011 Sheet 3 of 18

US 2011/0197124 A1l

306
305 /
301 DISPLAY
/ UNIT
PROCESSOR
307
INPUT
DEVICES
302
MEMORY 308
UNIT /
FIXED
MEDIA
DRIVE
303
309
/0 /
CONTROLLER
REMOVABLE
MEDIA
DRIVE
304
/ 310
NETWORK
INTERFACE OUTPUT
DEVICES

FIG.3

Patent Application Publication Aug. 11,2011 Sheet 4 of 18 US 2011/0197124 A1

401
USER PROVIDES AN INPUT TO RETRIEVE A DYNAMIC CONTENT OBJECT j

Y
402
THE APPLICATION PROGRAMMING INTERFACE TRIGGERS THE RETRIEVAL OF /

THE DYNAMIC CONTENT OBIECT BASED ON THE USER’S INPUT

4 403
THE APPLICATION PROGRAMMING INTERFACE RETRIEVES THE DYNAMIC J
CONTENT OBIJECT FROM A REMOTELY HOSTED MEMORY LOCATION

A 4

THE APPLICATION PROGRAMMING INTERFACE UPDATES THE DOCUMENT 404
OBJECT MODEL OF THE WEB BROWSER WITH THE RETRIEVED DYNAMIC
CONTENT OBIECT
Y 405

THE APPLICATION PROGRAMMING INTERFACE RENDERS THE RETRIEVED J
DYNAMIC CONTENT OBJECT ON THE WEB PAGE

Y

TIIE APPLICATION PROGRAMMING INTERFACE UPDATES TIIE
FUNCTIONALITY OF THE RENDERED DYNAMIC CONTENT OBIJECT

406

A 4

THE APPLICATION PROGRAMMING INTERFACE CLEARS THE DYNAMIC

CONTENT OBJECT FROM THE DOCUMENT OBJECT MODEL OF THE WEB
BROWSER

407

FI1G. 4

Patent Application Publication Aug. 11, 2011 Sheet 5 of 18 US 2011/0197124 A1

LATITUDE: | 37807481 TLONGITUDE: | _122.475203 [GET SATOLLITE MAP]

BACK 10 TOP

YAHOO WEATHER
ON CLICKING THE LINK BELOW, THE CURRENT WEATHER FOR PACIFIC (CA) IS LOADED USING THE YAHOO WEATHER APL

501

[VICW THE CURRENT WEATHER FOR PACIFICA (Ca) USING THE YAHOO WEATHER API]

CLOSE X

YAHOO! NEWS

&

TN

CURRENT CONDITTONS:
LIGHT RAIN, 51 I\

FORECAST:

TUE - RAIN/IHUNDER/WIND. 1IGIL: 54
LOW: 49
WID-RAIN/THUNDER/WIND. HIGH: 51
LOW: 47
FULL FORECAST AT YAHOO! WEATHER
(PROVIDED BY TIIE WEATITIER
CHANNEL)

FIG. 5A

Patent Application Publication

Aug. 11,2011 Sheet 6 of 18

US 2011/0197124 A1l

BACK IO TOP

DYNAMIC TABS

EACH OF THE BELOW TABS DYNAMICALLY IMPORTS CONTENT ASSOCIATED WITH THE TAB FROM AN EXTERNAL FILE.
‘WIIEN TIIE PAGE LOADS, TIIE CONTENT ASSOCIATED WITII TIIE FIRST TAB IS AUTOMATICALLY IMPORTED AND

DISPTAYED
502 503 j04
HOURGLASS | STARLIGHT | WAYSIDE |
TITE TOURGLASS

I GAZED WITHI RAPT ATTENTION
AT TIIE OBJECT BORNE TO ME ALAS
BY FORTUITY OR FATE...

BOUNDIESS BOURNS, WHERTIIN CONSTRAINTS

FIG. 5B

Patent Application Publication

Aug. 11,2011 Sheet 7 of 18 US 2011/0197124 A1

01
DRAG AND DROP "

* LOADS AN INTCRACTIVE FORM
I'ROM overlays.himl, WHICH
DYNAMICALLY LOADS A
REQUIRED API;

SUPPORTING SCRIPTS THEN
EXECUTE TO ADD EVENT
HANDLERS TO EACH FORM FIELD.

DYNAMICALLY IMPORTS WIIEN
ACTIVATED:

jquery.acc.dnd.js AND
setup.acc.dnd.js

POETRY EXCERPT 4/6 02

*LOADS AN EXTERNAL POETRY
LEXCERPT FROM overlays.himl,
WHICH THEN REGISTERS A
SECOND LEVEL OF TOOLTIP
OVERLAYS THAT REMAIN
DORMANT UNTIL TIIE
TRIGGERING ELEMENT IS

ACTIVATED. (ALL TOOL TIPS ARIL:

PULLED FROM overlays html AS

NEEDED.)

DYNAMICALLY IMPORTS WIIEN

ACTIVATED:
setup.ace.tooltips.js

()PTI()NS‘/6()3

¢ PULLS A LIST OF MENU OPTIONS
I'ROM overlays.himl.

P
V]

¢ DISPLAYS A CUSTOM HLILP
MESSAGI 'ROM overlays.himl.,
WHICH OVERRIDES THE DEFAULT
POSITION PARAMETER TO
DISPLAY THE MESSAGE ON THE
LELTE SIDE OF THIL HELP ICON.

F1G. 6A

Patent Application Publication

Aug. 11,2011 Sheet 8 of 18

01
DRAG AND DROP 4/6

* LLOADS AN INTERACTIVE FORM
TROM overlays.html, WHICH
DYNAMICALLY LOADS A
REQUIRED APT;
SUPPORTING SCRIPTS THEN
LEXCCUTE TGO ADD EVENT
HANDLERS TO EACH FORM IFICLD.

DYNAMICALLY IMPORTS WHLN
ACTIVATED:

jquery.acc.dnd.js AND
setup.acc.dnd.js

POETRY EXCERPT ./6 02

*T.OADS AN EXTERNAL POETRY
EXCERPT FROM overlays.html,
‘WHICH THEN REGISTERS A
SCECOND LEVEL OF TOOLTIP
OVERLAYS THAT REMAIN
DORMANT UNTIL THE
TRIGGERING CLEMENT IS
ACTIVATED. (ALL TOOLTIPS ARLE
PULLED FROM overlays.html AS
NLEDLED)

DYNAMICALLY IMPORTS WHLN
ACTIVATLD:
setup.ace.tooltips.js

OPTIONS ‘/603

¢ PULLS A LIST OF MENU OPTIONS
FROM overlays.html. 05

604 Change Pn‘z/ile
0\ Info
Email

Password
Preferences

.

+ DISPL.
MLSSAoTTICU
WHICH OVERRIDLS THE DEFAULT
POSITION PARAM To

S AGL ON THL

T.EFT SIDE OF THE HEL.P ICON.

FIG. 6B

US 2011/0197124 A1l

Patent Application Publication

Aug. 11,2011 Sheet 9 of 18

DRAG AND DROP 40— 601

* LOADS AN INTERACTIVE FORM
I'ROM overlays himl, WHICH
DYNAMICALLY LOADS A
REQUIRED APL;

SUPPORTING SCRIPTS THEN
EXLECUTE TO ADD EVENT
HANDI.TRS TO EACH FORM TIELD.

DYNAMICALLY IMPORTS WHEN
ACTIVATED:

jquery.acc.dnd.js AND
setup.acc.dnd.js

WA/GOZ

« LOADS AN EXTURNAL POLTRY
IEXCERPT 'ROM overlays.html,
WHICH THEN REGISTERS A
SECOND LEVEL OF TOOLTIP
OVERLAYS THA'T REMAIN
DORMANT UNTIL THE
TRIGGERING TILEMINT 1S
ACTIVATED. (ALL TOOLTIPS ARE
PULLED FROM overlays html AS
NEEDED.)

* DYNAMICALLY IMPORTS WHLN
ACTIVATED:

setup.acc.tooltips.is

OP‘l'lONSA/(,():;

¢ PULLS A LIST Ol MEINU OPTIONS
I'ROM overlays.html.

¢ INITIAL SETUP REQUIRES:
setup.acc.overlays.js

604

!
* DISPLAYS A CUSTOM HCELP

MHESSAGE FROM overlays.himl.,
WHICH OVERRIDES THE DEFAULT

If LOSTE X

ONLY THIL WHISPER OT SAND

US 2011/0197124 A1l

THE POETRY EXCERPT ON THE RIGHT CONTAINS UNDERLINED (AN NOW BE IIEARD,

KEYWORDS, WIIICII, WIIEN MOUSED OVER, WILL DISPLAY A WIIENEVER STIRRED
DEFINITION OF EACITI WORD. WIIEN TIIE MOUSE MOVES OUT BY THE RESTLESS WIND’S
606 OF TIIE DEFINITION, TIIE DEFINITION OVERLAY WILL CARESS...

AS ONLY THE RUMBLE OF
ANCIENT WORKS CAN STILL Bl
FELT, DISCONCERTING 'ROM
NIGHTED HATLS,
WHLRTE GREAT MACHINES RUN
ON AND ON TFAR BENCATH THC

EARTIIL COULD I DIVINE TIIE
AGES HENCE, AND BEHOLDING
FATE

\ AUTOMATICALLY DISAPPEAR.

THESE ADDITIONAL OVERLAY INSTANCES ARE DYNAMICALLY
LOADED WHEN THE OVERLAY IS ACIIVATED; OTHERWISE, THEY
REMAIN DORMANT

FIG. 6C

Patent Application Publication Aug. 11,2011 Sheet 10 of 18 US 2011/0197124 A1

LATITUDE: LONGITUDE!

37.807481 -122, 475203

[GLT SATCLLITE MAP]

701

A
i

R
(3 . .
Py e - - -Masng
. T -—
-§M§p a’e?@{@ C}E@ TermEofise

FIG.7A

Patent Application Publication Aug. 11,2011 Sheet 11 of 18 US 2011/0197124 A1

OVERVIDW P 2 o SATEILITE | HYBRID
FEATURES b
ACCESSIBILITY

CORE APT

PUBLIC

GETTING STARTED
LICENSING

CONTACTUS

—
<

LEACH OF THE BELOW TABS DYNAMICALLY IMPORTS A MAP ASSOCIATED WITH THE TAB I'ROM AN EXTERNAL TILE. WHEN
THE PAGE LOADS, THE MADP ASSOCIATED WITH THE FIRST TAB IS AUTOMATICALLY IMPORTED AND DISPLAYED

702 703 704 705 706
/ J J J J
[wom | [roaomar | |@samine | [uvsem | [rmeean |
KEYBOARD
ACCESSIBLE

FIG.7B

Patent Application Publication Aug. 11,2011 Sheet 12 of 18 US 2011/0197124 A1

802

[LOAD “THE RAVEN,” BY EDGAR ALLAN POE J

CONDITIONAL LOCKING

CIIECK TIIE LOCK CIIECKBOX SIIOWN BELOW; TIIEN SCROLL UP AND DOWN TIIE PAGE AKND TRY TO OPEN OR CLOSE
VARIOUS DYNAMIC CONTENT OBILCTS. UNCHLECK THE LOCK CHECKBOX 10O UNLOCK ALL DYNAMIC CONTENT OBILCTS.

[OPEN A FLOATING CIIECKBOX TO LOCK ALL DYNAMIC CONTENT OBJECTS.]

(THE FLOATING BOX WILL FIX ITSELF TQ THE BOTTOM OF THE SCREEN)
BACK TO TOP

801

CLOSE X |[z| LOCK ALL DYNAMIC CONTENT |

NOW SCROLL UP & DOWN 'THL PAGL;
TRY ACTIVATING EACH EXAMPLE.

FIG. 8

Patent Application Publication Aug. 11,2011 Sheet 13 of 18 US 2011/0197124 A1

AJAX
// Setup custom parameters for the $.ajax API call
{
trigger: ‘#showRaven’,
id: ‘ajax’,

role: ‘Featured Poem’,

binders: ‘click’,

mode: 6,

isStatic: ‘#featuredDivContent’,

className: ‘ajaxPage’,

ajaxOptions: {

// url is the only required value, see Options.html for additional details.
url: ‘demo files/raven.txt’

|3

ajaxBeforesend: function(config, options, XMLHttpRequest)
{ var img = ‘<img src="demo_files/images/clock.png”
alt="Loading...” title="Loading...”

FIG. 9A

Patent Application Publication Aug. 11,2011 Sheet 14 of 18 US 2011/0197124 A1

A .fn.morph() (Method) (External)

The “fn.morph()” function can be used to convert any DOM node into a
dynamic content object at runtime.

Parameters:
1. The DOM node to convert.
1. A key/value mapping object to configure the functionality of the new dynamic
content object.

Syntax
// Convert a DOM node into a dynamic content object

var node = $(‘img.jobposl0l’).get(0);

$accDC.fn.morph (node, {

/I Specify the id for the dynamic content object

id: ‘jobl0l’,

/1 give the object a role for screen reader users

role: ‘Job: Software Engineering: 101°,

// Prevent the object from being closed from the keyboard by screen reader
users.

showHiddenClose: false,

// Prevent hidden boundary information from being conveyed to screen reader
users during navigation.

showHiddenBounds: false,

/I Make the object draggable

isDraggable: true,

// Specify a drop zone for dragging

dropTarget: ‘div.positions ol.applyFor’,

// Configure automatic drag and drop support for screen reader and keyboard
only users

accDD: {

on: true

}s
.. I/ Etc.

135

FIG. 9B

Patent Application Publication = Aug. 11,2011 Sheet 15 of 18 US 2011/0197124 A1

LIVE CHAT WITH AUTO-
TIX POSITIONING

OVERVIEW

1001
1003

TEATURES /R ’
ACCESSIBILITY
L“fm\‘ 1] /

L1V DLMO IL.IVE: CHAT @

—
>
(=3
9

CORE API ERIC
TESTING 123
PUBLIC géjlgou 2:3940 IST)

BRILLTIANT!
GUTTING STARTED (1/122011 2:39AM IST})

SSAGT:
TICENSING

CONTACT US /VNm/V'\

1003

N <

LEGEND

FIG. 10

Patent Application

Publication Aug. 11,2011 Sheet 16 of 18 US 2011/0197124 A1

OVIRVIIW
FEATURES

(The tab order will cycle through all draggable items within the Universe section before moving over
to the Galaxy section. Press shift+ tab to move from the Galaxy section back into the Universe section.)

1101

[CONVERTED ALL IMAGES TO DYNAMIC CONTENT OBJECTS

ACCESSIBILITY

UNIVERSHE GALAXY

[LTVT DIEMO
CORE API
PUBLIC

GETTING STARTED

LICENSING

1103

S/

206

)
3

| coxtacrus

LEGEND

| ABOUT | | LEGAL TERMS PRIVACY

FIG. 11

Patent Application Publication Aug. 11,2011 Sheet 17 of 18 US 2011/0197124 A1

OVIIRVIEW

TEATURTS
ITIE TABS SIIOWXN BELOW ARE CONFIGURED 10 EXECUTE EXTERNAL FILES TO GENERATE

ACCESSIBILITY NLESTED DYNAMIC CONTENT OBICCTS

TICTINSING

IDESPITT MUCH RESEARCH, THE EXACT YILAR HAMILET WAS WRITTEN
IREMAINS IN DISPUTE. THREE DIFFEREN']' EARLY VERSIONS OF THE PLAY HAVE
SURVIVED: TITESE ARE KNOWN AS TITE FIRST QUARTO (Q1), TITE SECOND

: JQUARTO (Q2), AND THE FIRST FOLIO (F1). EACH HAS LINES, AND EVEN SCENES,
["DITOR PROPTIRTITS THA'T' ARE MISSING FROM THE OTHERS. SHAKESPEARE BASED HAMLET ON
I.LGIND | ACCOUNT SETTINGS[IHE LEGEND OF AMLETH, PRESERVED BY 13TH—CENTURY CHRONICLER

DYNAMIC CONTENT EDITOR 206
IDIT VW u « " [urrp
GETTING STARTED -
1201 206
—

CONTACT US INEW FROM IITTP

FIG. 12

Patent Application Publication

Aug. 11,2011 Sheet 18 of 18 US 2011/0197124 A1

QOVERVIEW
TTATURES
ACCILSSIBILITY
[LIVE DEMO

CORE APL 1302a

CLICK ON THE GO BUTTON GIVEN BELOW 1O DYNAMICALLY PLAY A FEATURED

PUBLIC ‘:’/

GETTING STARTED

LICTNSING

CONTACT US

PRESENTATION
FEATURED PRESENTATION
1301
GO

o

FEATURED PRESENTATION]
206

el

START MEDIA

>

]

LEGEND

FIG. 13

US 2011/0197124 Al

AUTOMATIC CREATION AND
MANAGEMENT OF DYNAMIC CONTENT

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of provisional
patent application No. 61/301,636 titled “Automatic Creation
And Management Of Dynamic Content”, filed on Feb. 5,
2010 in the United States Patent and Trademark Office.

[0002] The specification of the above referenced patent
application is incorporated herein by reference in its entirety.

BACKGROUND

[0003] Conventional content rendering applications for
rendering dynamic content utilize additional resources of a
user’s computing device for retrieving the actual dynamic
content prior to rendering the dynamic content to the user. The
additional overhead created due to the utilization of the
resources of the user’s computing device results in creating a
burden on the user’s computing device. Also in cases where
the content rendering applications render a dynamic content
object, the dynamic content object lacks accessibility, for
example, by other assistive technology software applications
on the user’s computing device that are required to enhance
the functionality of the dynamic content object. Such content
rendering applications require additional time to update the
functionality of the dynamic content object and require
manual intervention to clear a memory space occupied by the
dynamic content object.

[0004] Hence, there is a long felt but unresolved need for a
computer implemented method and system that creates and
manages dynamic content on a web page, provides interfac-
ing capabilities with dynamically retrieved and rendered
dynamic content objects to other applications on the comput-
ing device, and provides seamless accessibility of the addi-
tional functionality of the dynamic content objects to assistive
technology users.

SUMMARY OF THE INVENTION

[0005] This summary is provided to introduce a selection of
concepts in a simplified form that are further described in the
detailed description of the invention. This summary is not
intended to identify key or essential inventive concepts of the
claimed subject matter, nor is it intended for determining the
scope of the claimed subject matter.

[0006] The computer implemented method and system dis-
closed herein addresses the above stated need for creating and
managing dynamic content on a web page, providing inter-
facing capabilities with dynamically retrieved and rendered
dynamic content objects to other applications on a user’s
computing device, and providing seamless accessibility of
the additional functionality of the dynamic content objects,
for example, to assistive technology users having disabilities.
[0007] The computer implemented method and system dis-
closed herein provides an application programming interface
that interacts with a browser application on a user’s comput-
ing device. As used herein, the term “application program-
ming interface” refers to a software program that defines a set
of rules and instructions for creating and managing dynamic
content and serves as an interface between the user and the
user’s computing device. The application programming inter-
face specifies a set of functions for interacting with the
browser application on the user’s computing device and for

Aug. 11,2011

creating and managing dynamic content on a web page. The
application programming interface allows creation and man-
agement of dynamic content on any web page that provides
access to dynamic content within web applications, for
example, rich internet applications. In an embodiment, the
application programming interface is implemented as a plug-
in, for example, a jQuery plug-in that powers interaction
between JavaScript and a hypertext markup language
(HTML). The application programming interface supports
multiple browser applications accessible over multiple com-
puting devices.

[0008] The application programming interface automates
the task of creating and rendering dynamic content on the web
page using performance and accessibility enhancing tech-
nologies. The application programming interface interacts
with the user’s browser application. The browser application
comprises multiple document objects contained in a docu-
ment object model. The user provides an input on the web
page to trigger retrieval of one or more of multiple dynamic
content objects. As used herein, the term “dynamic content
objects” refers to instances of dynamic content. The applica-
tion programming interface provides accessibility for each of
the dynamic content objects.

[0009] The application programming interface dynami-
cally retrieves one or more dynamic content objects from
local memory locations and/or remotely hosted memory loca-
tions. In an embodiment, the application programming inter-
face retrieves the dynamic content from, for example, inter-
nal, external, and remotely hosted resources, for example,
document object model (DOM) nodes, text, hypertext
markup language (HTML), extensible hypertext markup lan-
guage (XHTML), extensible markup language (XML), exter-
nal scripts, JavaScript object notation (JSON), JSON with
padding (JSONP), and data from remotely hosted APIs at
runtime. The application programming interface configures
the dynamic content objects to process and render the
dynamic content with advanced functionality. The applica-
tion programming interface updates the document object
model of the browser application using the retrieved dynamic
content objects. The retrieved dynamic content objects define
the document objects contained in the document object
model. In an embodiment, the application programming
interface dynamically generates one or more nested dynamic
content objects in the retrieved dynamic content objects. The
dynamically generated nested dynamic content objects are
dormant prior to activation of the retrieved dynamic content
objects.

[0010] The application programming interface dynami-
cally renders the retrieved dynamic content objects onto the
web page from the document objects contained in the updated
document object model. The application programming inter-
face enables the rendered dynamic content objects to conform
to multiple content guidelines. The rendered dynamic content
objects are interpretable by output devices that render the
retrieved dynamic content objects to the user. The application
programming interface updates functionality of the rendered
dynamic content objects on the web page at runtime. In an
embodiment, the application programming interface passes
the retrieved dynamic content objects from one web page to
another web page for sharing data and resources. The appli-
cation programming interface automatically clears dormant
dynamic content objects from the document object model for
preventing cluttering and memory leaks in the document
object model. The application programming interface, in

US 2011/0197124 Al

communication with the browser application, thereby creates
and manages the dynamic content on the web page. The
application programming interface disclosed herein is used to
create scalable, performance enhanced, resource efficient,
and automatically accessible rich internet applications.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing summary, as well as the following
detailed description of the invention, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, exemplary construc-
tions of the invention are shown in the drawings. However, the
invention is not limited to the specific methods and instru-
mentalities disclosed herein.

[0012] FIG. 1 illustrates a computer implemented method
for creating and managing dynamic content on a web page.
[0013] FIG. 2 illustrates a computer implemented system
for creating and managing dynamic content on a web page.
[0014] FIG. 3 exemplarily illustrates the architecture of a
computer system employed for creating and managing
dynamic content on a web page.

[0015] FIG. 4 exemplarily illustrates a flow diagram for
creating and managing dynamic content on a web page.
[0016] FIG. SA exemplarily illustrates a weather applica-
tionrendered as a dynamic content object on a web page by an
application programming interface based on an input pro-
vided by a user.

[0017] FIG. 5B exemplarily illustrates a poetry application
rendered as a dynamic content object on a web page by the
application programming interface based on an input pro-
vided by a user.

[0018] FIGS. 6A-6C exemplarily illustrate an interactive
form, a poetry excerpt link, and a list of menu options ren-
dered as dynamic content objects on a web page by the appli-
cation programming interface based on an input provided by
a user.

[0019] FIGS. 7A-7B exemplarily illustrate a map rendered
as a dynamic content object on a web page by the application
programming interface based on an input provided by a user.
[0020] FIG. 8 exemplarily illustrates locking of dynamic
content objects on a web page by the application program-
ming interface based on an input by the user.

[0021] FIGS. 9A-9B exemplarily illustrate a code compo-
nent that defines a document object in a document object
model using a retrieved dynamic content object.

[0022] FIG. 10 exemplarily illustrates a chat icon on a web
page for triggering a chat component as a dynamic content
object on the web page.

[0023] FIG. 11 exemplarily illustrates images rendered as
dynamic content objects on a web page by the application
programming interface.

[0024] FIG. 12 exemplarily illustrates extensible markup
language generated drop down menus rendered as nested
dynamic content objects on a web page by the application
programming interface.

[0025] FIG. 13 exemplarily illustrates an audio visual
player rendered as a nested dynamic content object on a web
page by the application programming interface.

DETAILED DESCRIPTION OF THE INVENTION

[0026] FIG. 1 illustrates a computer implemented method
for creating and managing dynamic content on a web page.
An application programming interface is provided 101 on a

Aug. 11,2011

browser application of a user’s computing device. As used
herein, the term “application programming interface” refers
to a software program that defines a set of rules and instruc-
tions for creating and managing dynamic content and serves
as an interface between the user and the user’s computing
device. The application programming interface can be run
locally on the user’s computing device or from any domain.
The application programming interface utilizes a cloud com-
puting environment to instantly provide processes in rich
internet application development.

[0027] The application programming interface allows cre-
ation and management of dynamic content on any web page
that provides access to dynamic content within web applica-
tions, for example, rich internet applications. As used herein,
the term “dynamic content” refers to content, for example,
textual content, video content, audio content, content in appli-
cations such as rich internet applications, etc., or any combi-
nation thereof, that changes or can be varied for each indi-
vidual viewing. The dynamic content is any type of static or
interactive content that is dynamically rendered within a
document object model (DOM) at runtime. Also, as used
herein, the term “document object model” refers to a cross-
platform and language-independent structure that represents
and interacts with objects in, for example, hypertext markup
language (HTML) documents, extensible hypertext markup
language (XHTML) documents, extensible markup language
(XML) documents, etc. The application programming inter-
face specifies a set of functions for interacting with the
browser application and for creating and managing dynamic
content on a web page. In an embodiment, the application
programming interface is implemented as a plug-in, for
example, a jQuery plug-in that powers interaction between
JavaScript and a hypertext markup language (HTML).
JQuery is a JavaScript library used to power the application
programming interface for cross browser compatibility.

[0028] The application programming interface interacts
with the browser application on the user’s computing device,
for example, a personal computer, a mobile phone, a tablet
computer, a personal digital assistant, etc. The browser appli-
cation is, for example, a web browser such as Internet
Explorer® of Microsoft Corporation, Firefox® of Mozilla
Corporation, etc., that retrieves, displays, and allows
exchange of content resources on the world wide web. The
browser application comprises multiple document objects
contained in the document object model. As used herein, the
term “document objects” refers to entities that are controlled
by commands of a programming language, for example, Java-
Script. The application programming interface supports mul-
tiple browser applications accessible over multiple comput-
ing devices, for example, mobile devices, desktops, laptops,
handheld devices, tablet computing devices, etc. The appli-
cation programming interface supports cross browser com-
patibility for computing devices.

[0029] Theuser provides an input, for example, by clicking
alink, a button, etc., or by moving a cursor over an image link
on the web page, to trigger 102 retrieval of one or more
dynamic content objects. As used herein, the term “dynamic
content objects” refers to instances of dynamic content. The
application programming interface disclosed herein dynami-
cally retrieves 103 one or more dynamic content objects from
one or more local memory locations and/or remotely hosted
memory locations. For example, the application program-
ming interface retrieves the dynamic content objects from
remote application programming interfaces (APIs) such as

US 2011/0197124 Al

Google™, Amazon.com®, PayPal™ of PayPal Pte. Ltd.,
flickr® of Yahoo! Inc., Facebook, or from any other remotely
hosted application programming interface (API) using mini-
mal code to maximize speed and efficiency. The application
programming interface also retrieves the dynamic content
objects from embedded script files, plug-ins, and other data
sources. In an embodiment, the application programming
interface uses an identification (ID) property to uniquely
identify each retrieved dynamic content object among the
retrieved dynamic content objects. The application program-
ming interface can be dynamically configured to retrieve
dynamic content from differing resource types at runtime.
The application programming interface can further retrieve
the content from, for example, internal, external, and
remotely hosted resources, for example, DOM nodes, text,
HTML, XHTML, XML, external scripts, JavaScript object
notation (JSON), JSON with padding (JSONP), and data
from remotely hosted APIs at runtime. The application pro-
gramming interface configures or generates the dynamic con-
tent objects to process and render the dynamic content with
advanced functionality on the web page.

[0030] In an embodiment, the application programming
interface dynamically generates unlimited nested dynamic
content objects in the retrieved dynamic content objects. The
dynamic content objects can include nested dynamic content
objects infinitely in a limitless recursion process. The gener-
ated nested dynamic content objects are dormant prior to the
activation of the retrieved dynamic content objects. In an
embodiment, scripts, remotely hosted application program-
ming interface calls, resource locators of each dynamic con-
tent object, etc., remain dormant until the dynamic content
object is activated. Unlimited dynamic content objects con-
taining nested dynamic content objects can also be created to
build complex web and web-based desktop applications with
minimal footprints. The nested dynamic content objects are
used to render user interface components, for example, dia-
logs, toolbars, menus, prompts, tooltips, tab pages, naviga-
tion panels, draggable windows, other visually displayed user
interface components, etc., on the web page. The user inter-
face components are configurable by changing or invoking
properties and methods within each nested dynamic content
object during setup or at runtime. Therefore, page speed and
performance are improved as nested dynamic content objects
within external sources are ignored until each of the nested
dynamic content objects is required in turn. Unlimited
dynamic content objects can be added on the web page with-
out negatively affecting browser resources or web page per-
formance, thereby allowing for fast load times for complex
web applications.

[0031] The internal properties, methods, or objects within
the dynamic content objects or group of dynamic content
objects can be overridden to change the default functionality
as needed during the setup process. Similarly, the dynamic
content object properties, methods, and objects can be
changed at runtime through the globally accessible document
objects within the document object model. New properties,
methods, and objects can also be added during the setup
process, for example, using JavaScript to extend the function-
ality of any dynamic content object or group of dynamic
content objects. In an embodiment, the application program-
ming interface defines an object, for example, “reg”, to
access, invoke, change or extend functionality of any
dynamic content object or group of dynamic content objects
at runtime, for example, using a unique identifier provided to

Aug. 11,2011

each of the dynamic content objects using the ID property.
Similarly, new properties, methods, and objects can be added
through the globally accessible document objects within the
document object model, for example, using JavaScript to
extend the functionality of any dynamic content object or
group of dynamic content objects at runtime.

[0032] The application programming interface provides
automatic accessibility and interfacing capabilities for each
of the dynamic content objects. For example, the dynamic
content objects can be automatically accessed by assistive
technology applications installed on or accessed by the user’s
computing device. The assistive technology applications
comprise, for example, assistive, adaptive, or rehabilitative
applications utilized by users having disabilities.

[0033] The application programming interface updates 104
the document object model of the browser application using
the retrieved dynamic content objects. The retrieved dynamic
content objects define the document objects in the document
object model. The application programming interface dis-
closed herein dynamically renders 105 the retrieved dynamic
content objects onto the web page from the document objects
contained in the updated document object model. In an
embodiment, the application programming interface defines,
for example, a source property, in conjunction with a mode
property to determine how dynamic content within a dynamic
content object is retrieved, processed, and rendered. In an
embodiment, the application programming interface passes
the retrieved dynamic content objects from one web page to
another web page for sharing data and resources.

[0034] In an embodiment, the application programming
interface defines a function, for example, close() in JavaS-
cript, to close the rendered dynamic content object. The appli-
cation programming interface disclosed herein automatically
removes closed dynamic content objects from the document
object model (DOM) to prevent cluttering and memory leaks
in the document object model, thereby allowing complex
applications to be used indefinitely without degrading perfor-
mance. The application programming interface automatically
clears dormant dynamic content objects from the document
object model. In an embodiment, the application program-
ming interface defines a function, for example, fn.destroy() in
JavaScript to destroy and remove the dynamic content objects
from the document object model. The dynamic content
objects retrieved from server side callbacks have the same
level of quality, performance, and accessibility as internally
referenced dynamic content objects. In an embodiment, the
application programming interface defines a function, for
example, fn.find() in JavaScript to execute a callback func-
tion on any dynamic content object at runtime.

[0035] The application programming interface disclosed
herein executes automated maintenance and check routines to
prevent the occurrence of document object model cluttering,
memory leaks, object conflicts, and performance degrading
during prolonged activity. The automated maintenance rou-
tines ensure that the dynamic content objects are removed
from the document object model when closed to prevent
cluttering. The automated check routines ensure that the
dynamic content objects include uniquely defined identifiers
when opened to prevent object instantiation conflicts. Per-
petual instantiation allows the dynamic content objects to be
configured or invoked regardless of whether the dynamic
content objects exist within the document object model.
When a user closes the rendered dynamic content objects and
when the dynamic content objects are removed from the

US 2011/0197124 Al

document object model, perpetual instantiation ensures that
the same dynamic content objects still exist within the
memory and can subsequently be reopened within the docu-
ment object model using JavaScript. For example, properties,
methods, and objects in the closed dynamic content objects
can be added, modified, or overridden using JavaScript before
the dynamic content objects are reopened within the docu-
ment object model at runtime.

[0036] The rendered dynamic content objects are interpret-
able by standard output devices that render the retrieved
dynamic content objects to the user. For example, the ren-
dered dynamic content objects are interpretable by a printer,
a display monitor, etc. The application programming inter-
face ensures that dynamic content objects conform to relative
web content accessibility guidelines (WCAG). The WCAG is
a collection of global development standards that can be used
to enhance accessibility for web-based technologies. The
dynamic content objects are screen reader accessible when
rendered to streamline development for large scale deploy-
ment, providing automatic conformance to relative WCAG.
WCAG cover a wide range of recommendations for making
web content more accessible. The application programming
interface enables automatic conformance to the WCAG and
therefore makes content accessible to a wider range of people
with disabilities, including blindness and low vision, deaf-
ness and hearing loss, learning disabilities, cognitive limita-
tions, limited movement, speech disabilities, photosensitiv-
ity, and combinations of these, and makes web content more
usable to users in general. For example, dynamic content
objects include automatic processing to ensure keyboard
accessibility, screen reader accessible hidden text and a hid-
den close link to ensure that dynamic content objects can be
navigated to and closed from the keyboard. Similarly, when
rendering a set of automated tab controls, screen reader acces-
sible hidden text, for example, “tab” or “tab selected” is
automatically appended to the triggering link text to convey
both role and state information to screen reader users. The
screen reader accessible hidden text for tab controls can be
overridden or changed during setup or at runtime allowing
screen reader support in multiple linguistic dialects using any
textual value.

[0037] The application programming interface disclosed
herein updates 106 the functionality of the rendered dynamic
content objects on the web page at runtime. The application
programming interface provides access to the internal func-
tionality of dynamic content objects at runtime to change or
query the methods and the properties of each of the dynamic
content objects for advancing the functionality of the
dynamic content objects. The application programming inter-
face uses scripts in the document object model to access and
manipulate the properties and methods of the dynamic con-
tent objects for conditional processing. For example, the
application programming interface can forcibly open and
close any of the dynamic content objects using the scripts in
the document object model. The application programming
interface also uses the scripts to query and invoke the prop-
erties and methods of one or more dynamic content objects at
runtime. The application programming interface also
declares new properties or methods during the setup process
to update the functionality of the dynamic content objects.
For example, the dynamic content objects can utilize cascad-
ing style sheet (CSS) to automate visual effects, and include
the ability to modify automated visual effects at runtime. The
application programming interface allows modification and/

Aug. 11,2011

or enhancement of behavior, functionality, appearances, and
content of the dynamic content objects at runtime.

[0038] The functionality of the dynamic content objects
can be accessed by screen reader users and keyboard only
users. The application programming interface ensures that the
dynamic content objects are automatically accessible to
screen reader and keyboard only users when rendered. In an
embodiment, the dynamic content objects comprise, for
example, screen reader accessible hidden text, strategic docu-
ment object model (DOM) insertion, strategic focus position-
ing, and accessible rich internet application (ARIA) live
region markup, to automatically aid accessibility for screen
reader and keyboard only users. Strategic DOM insertion can
be used to ensure the reading order accessibility of the
dynamic content object for screen reader and keyboard only
users. Strategic focus positioning can be used to route focus to
and from the dynamic content object when opened or closed
to ensure keyboard accessibility for screen reader and key-
board only users. ARIA is a browser technology developed by
the web accessibility initiative (WAI) to create rich internet
applications that are automatically accessible to assistive
technologies, for example, screen readers, screen magnifiers,
and speech recognition software, that are used to enhance
accessibility for disabled users. ARIA live region markup can
be used to apply an invisible heading structure to a dynamic
content object for screen reader users.

[0039] The dynamic content objects can utilize an auto-
matic accessibility algorithm implemented by the application
programming interface to force leading screen readers to
recognize dynamic content changes immediately. The auto-
matic accessibility algorithm forces screen readers to recog-
nize dynamic content changes immediately by updating key
attribute values and content within strategically positioned
HTML tags within the document object model at runtime. In
an embodiment, the application programming interface
refreshes the document object model for screen reader users if
the rendered dynamic content is not automatically recog-
nized. The application programming interface implements an
“announce” function for sending text messages that are auto-
matically announced by leading screen readers at runtime.

[0040] The dynamic content object is registered in the
document object model along with a unique identifier (ID) to
ensure proper functionality and to prevent conflicts between
other dynamic content objects during processing. Each
dynamic content object declaration requires an object or cas-
cading style sheet (CSS) selector, where the object or CSS
selector points to an active element that acts as a triggering
element for the dynamic content object. There is generally
one active element but it is possible to use a CSS selector that
references one or more dynamic content objects such as a link
in a header and a footer. The CSS selector for one or more
document object model (DOM) nodes determines a target
zone for the dynamic content object. The target zone is a
location within the document object model where the
dynamic content object is inserted. In an embodiment, the
target zone can be set, reassigned or removed at runtime. In
another embodiment, the application programming interface
defines a function, for example, fn.morph() in JavaScript, to
convert a DOM node to a dynamic content object at runtime.
A brief and descriptive role is required for each of the
dynamic content objects. The descriptive role is visually hid-
den but can be seen by screen reader users. For example,

2

descriptive roles can be a “help dialog”, “calendar picker”,

2 <

“extended tool tip”, “alert”, “menu” or any other textual

US 2011/0197124 Al

value, which indicates the purpose of the dynamic content
object. The descriptive role within a dynamic content object
can be changed during setup or at runtime to allow for local-
ization in multiple linguistic dialects.

[0041] In an embodiment, the application programming
interface provides one or more triggering elements for trig-
gering the dynamic content objects. The triggering elements
are objects that trigger opening or activation of the dynamic
content objects. In an embodiment, cascading style sheet
(CSS) selectors associate the dynamic content objects with
one or more of the triggering elements at runtime. The appli-
cation programming interface defines a property, for
example, atrigger, to bind one or more necessary events to the
triggering elements for activating the dynamic content
objects. The application programming interface defines a
property, for example, bind, to assign necessary event binders
to the triggering elements. As used herein, the term “event
binder” refers to an event, for example, a click, associated
with any event handler, which has been registered with the
browser application. Also, as used herein, the term “event
handler” refers to a piece of executable code that handles
interactions received in a computer program. In an embodi-
ment, the application programming interface defines a func-
tion, for example, open() in JavaScript, to trigger the dynamic
content object.

[0042] Event binders are used to activate the dynamic con-
tent objects. A dynamic content object contains functionality,
which can be accessed by the keyboard. The functionality,
which can be accessed by the keyboard, is used in combina-
tion with the descriptive role to indicate the boundaries of
each dynamic content object and to provide a hidden close
link for screen reader users.

[0043] Event binders are declared within their properties
during the initial setup process to register the event handlers,
which trigger objects. For example, “bind: ‘click’” and “bind:
‘click focus mouseover’” are valid event binder declarations.
The properties, methods, and objects within each dynamic
content object can be overridden or changed during setup or at
runtime to customize the functionality of the dynamic content
object. For example, the supplementary descriptive role prop-
erties that can be overridden during the setup process or at
runtime are, for example, “start”, “end”, and “close”. The
supplementary descriptive role properties help in providing
screen reader localization support in multiple linguistic dia-
lects when they are overridden. In an embodiment, the appli-
cation programming interface exposes property controlled
behavior switches for programmatic configuration. Dynamic
content objects are not created during the setup process,
resulting in faster load-times for high profile websites. Fur-
thermore, external and remotely hosted sources can be used to
render server side content immediately.

[0044] Since the application programming interface dis-
closed herein runs at the top level of the document object
model, the application programming interface can be invoked
within separate declarations as many times as needed to group
different types of dynamic content. The application program-
ming interface comprises an invocation function that accepts,
for example, four arguments. The first argument is an array
that includes each dynamic content object declaration to reg-
ister within the document object model. The second is a
key/value mapping object to extend or override global func-
tionality within all dynamic content objects declared in the
current invocation function. The third argument specifies that
the current invocation function only runs after the web page

Aug. 11,2011

has fully loaded in the browser application. The fourth argu-
ment determines whether asynchronous processing should be
used during the dynamic content object registration process
to minimize performance delays.

[0045] The invocation function initializes resource map-
pings for the dynamic content objects to be registered in the
document object model. The declared instances of the appli-
cation programming interface can be locally or globally
extended to perform new operations as properties and meth-
ods are added or overridden during setup or at runtime. For
example, to add or override properties and methods for the
dynamic content objects declared in the current application
programming interface invocation using global scope, new
properties and methods are declared within the application
programming interface invocation function by passing a col-
lection object to a second parameter during setup. The col-
lection object is a group of related objects. These properties,
methods, and objects are globally applied to the dynamic
content objects declared in the first parameter containing an
array of dynamic content objects to register during setup. The
feature of local or global extension of properties, methods,
and objects makes it possible to shape or fit dynamic content
objects into any product or utility that creates and renders
automatically accessible dynamic content. A dynamic con-
tent object, once instantiated, can be accessed from any other
dynamic content object or intra-document scripts to invoke,
query, add or override any property, method, or object within
any dynamic content object at runtime. The globally acces-
sible instance of the application programming interface
within the document object model exposes all instantiated
dynamic content objects at runtime.

[0046] The application programming interface provides
scalable and dynamic content management to power complex
behaviors in web applications, for example, rich internet
applications, etc., ensuring automatic accessibility for assis-
tive technology users. The application programming inter-
face maximizes the speed and efficiency of web applications
by instantiating dynamic content objects when explicitly acti-
vated. The dynamic content objects can be configured, modi-
fied, extended, invoked, and controlled at runtime. The appli-
cation programming interface disclosed herein utilizes, for
example, unobtrusive JavaScript and interchangeable code
objects to maximize performance and code manageability.
The dynamic content object does not require embedded
scripting to render the dynamic content objects in the docu-
ment object model. The code objects are a sequence of
instructions to a computing device to perform a specific task.
Differing programming tasks can now be delegated to mul-
tiple development teams to assemble the code objects with
reliable results.

[0047] Inanembodiment, flexible interfaces can be created
by interfacing with the code objects to share, invoke, or
inherit properties and methods. The code objects’ behavior,
property, and functionality can be invoked by external scripts
written, for example, in JavaScript. Code objects process
flags can be set within code objects to indicate processing
milestones for error handling and bug reporting. The appli-
cation programming interface provides a flow controlled pro-
cess for debugging programming code. The application pro-
gramming interface utilizes flow control to ensure a script
execution order. In an embodiment, the behavior, functional -
ity and properties associated with the dynamic content
objects can be enhanced at runtime by modifying the behav-
ior, functionality, and properties of the code objects. The

US 2011/0197124 Al

dynamic content objects can be passed from one web page to
another web page as JavaScript object notation (JSON)
strings and converted back to dynamic content objects for
continued interaction.

[0048] The application programming interface disclosed
herein increases the performance of a web page by importing
external content including, for example, supporting script
files, plug-ins, etc., on an as-needed basis at runtime. The
supporting script files, plug-ins, and remotely hosted
resources are dormant until the instant when each dynamic
content object is rendered. As a result, no dynamic content
objects are created during the setup process, allowing for fast
load-times for high profile web applications, for example,
rich internet applications. The application programming
interface in communication with the browser application
therefore creates and manages dynamic content within the
web application.

[0049] FIG. 2 illustrates a computer implemented system
200 for creating and managing dynamic content on a web
page. The computer implemented system 200 disclosed
herein comprises an application programming interface 204
that interacts with a browser application 205 on a user’s 201
computing device 202. The browser application 205 com-
prises multiple document objects contained in a document
object model. In an embodiment, the application program-
ming interface 204 is accessible via a network 203. The
application programming interface 204 comprises an object
retrieval module 204a, an object updating module 2045, an
object rendering module 204¢, a function updating module
204d, a memory management module 204¢, a guideline con-
formance module 204/, and a content object accessibility
module 204g.

[0050] The object retrieval module 204a triggers retrieval
of'one or more dynamic content objects 206 on the web page
based on auser’s 201 input. The object retrieval module 204a
dynamically retrieves the dynamic content objects 206 from
one or more local memory locations and/or remotely hosted
memory locations via the network 203. The object updating
module 2045 updates the document object model of the
browser application 205 using the retrieved dynamic content
objects 206. The retrieved dynamic content objects 206 define
the document objects in the document object model. In an
embodiment, the object updating module 2045 dynamically
generates one or more nested dynamic content objects 206 in
the retrieved dynamic content objects 206. The dynamically
generated nested dynamic content objects 206 are dormant
prior to activation of the retrieved dynamic content objects
206.

[0051] The objectrendering module 204¢ dynamically ren-
ders the retrieved dynamic content objects 206 onto the web
page from the document objects contained in the updated
document object model. In an embodiment, the object ren-
dering module 204c¢ passes one or more of the retrieved
dynamic content objects 206 from one web page to another
web page for sharing data and resources. The function updat-
ing module 204d updates functionality of the rendered
dynamic content objects 206 on the web page at runtime. The
memory management module 204e¢ automatically clears dor-
mant dynamic content objects 206 from the document object
model for preventing cluttering and memory leaks in the
document object model. The guideline conformance module
204/ enables the rendered dynamic content objects 206 to
conform to content guidelines, for example, web content
accessibility guidelines (WCAG) as disclosed in the detailed

Aug. 11,2011

description of FIG. 1. The content object accessibility module
204g provides accessibility for each of the dynamic content
objects 206.

[0052] FIG. 3 exemplarily illustrates the architecture of a
computer system 300 employed for creating and managing
dynamic content on a web page. In an embodiment, the appli-
cation programming interface 204 of the computer imple-
mented system 200 disclosed herein employs the architecture
of'the computer system 300 exemplarily illustrated in FIG. 3
for creating and managing dynamic content on a web page.
The application programming interface 204 is deployed on
the browser application 205 on the user’s 201 computing
device 202. The application programming interface 204 is
accessible by the browser application 205. The application
programming interface 204 dynamically retrieves the
dynamic content objects 206 from one or more local memory
locations and/or remotely hosted memory locations, for
example, via the network 203 such as a short range network or
a long range network. The network 203 is, for example, a
local area network (LAN), a wide area network, a mobile
communication network, etc. The computer system 300 com-
prises, for example, a processor 301, a memory unit 302 for
storing programs and data, an input/output (I/O) controller
303, a network interface 304 that may access wireless net-
works such as the network 203, a data bus 305, a display unit
306, input devices 307, a fixed media drive 308, a removable
media drive 309, output devices 310, etc.

[0053] The processor 301 is an electronic circuit that
executes computer programs. The memory unit 302 is used
for storing programs, applications, and data. The application
programming interface 204 is stored on the memory unit 302
or the media drives 308 and 309 of the computer system 300.
The memory unit 302 is, for example, a random access
memory (RAM) or another type of dynamic storage device
that stores information and instructions for execution by the
processor 301. The memory unit 302 also stores temporary
variables and other intermediate information used during
execution of the instructions by the processor 301. The com-
puter system 300 further comprises a read only memory
(ROM) or another type of static storage device that stores
static information and instructions for the processor 301.
[0054] The network interface 304 enables connection ofthe
computer system 300 to the network 203. The computer sys-
tem 300 communicates with other computer systems, for
example, through the network interface 304. The network
interface 304 is, for example, a Bluetooth™ interface, an
infrared (IR) interface, a WiFi interface, a universal serial bus
interface (USB), a local area network (LAN) or wide area
network (WAN) interface, etc. The /O controller 303 con-
trols the input actions of the user 201 on the browser appli-
cation 205, for example, a mouse click or a keystroke on the
browser application 205, etc., and output actions of the
browser application 205. The data bus 305 permits commu-
nications between the modules, for example, 204a, 2045,
204c¢,204d, 204, 204/, and 204g of the application program-
ming interface 204 deployed on the computer system 300.
[0055] The display unit 306 displays, via the browser appli-
cation 205, the results of the object retrieval module 2044, the
object updating module 2045, the object rendering module
204c, the function updating module 2044, the memory man-
agement module 204¢, the guideline conformation module
204, and the content object accessibility module 204g on the
web page. The input devices 307 are used for inputting data
into the computer system 300. The input devices 307 are, for

US 2011/0197124 Al

example, a keyboard such as an alphanumeric keyboard, a
joystick, a mouse, a touch pad, a light pen, microphone, etc.
[0056] The computer system 300 further comprises a fixed
media drive 308, for example, a hard drive, and a removable
media drive 309. The removable media drive 309 receives
removable media. Computer applications and programs are
used for operating the computer system 300. The programs
are loaded onto the fixed media drive 308 and into the
memory unit 302 of the computer system 300 via the remov-
able media drive 309, or the network interface 304. In an
embodiment, the computer applications and programs may
be loaded directly through the network 203. Computer appli-
cations and programs are executed by double clicking a
related icon displayed on the display unit 306 using one of the
input devices 307. The user 201 interacts with the computer
system 300 via the browser application 205 using the display
unit 306.

[0057] The computer system 300 employs an operating
system for performing multiple tasks. The operating system is
responsible for management and coordination of activities
and sharing of the resources of the computer system 300. The
operating system further manages security of the computer
system 300, peripheral devices connected to the computer
system 300, and network connections. The operating system
employed on the computer system 300 recognizes, for
example, inputs provided by the user 201 using one of the
input devices 307, the output display, files and directories
stored locally on the fixed media drive 308, etc. The operating
system on the computer system 300 executes different pro-
grams, for example, the browser application 205, an elec-
tronic mail application, etc., initiated by the user 201 using
the processor 301. Instructions for executing the modules
204a,204b,204c¢, 2044, 204¢, 204f, and 204¢ of the applica-
tion programming interface 204 are retrieved by the processor
301 from the program memory in the form of signals. A
program counter (PC) determines locations of the instruc-
tions in the program memory. The program counter stores a
number that identifies the current position in the program of
the modules 204a, 2045, 204c¢, 204d, 204¢, 2041, and 204g of
the application programming interface 204.

[0058] The instructions fetched by the processor 301 from
the program memory after being processed are decoded. The
instructions are placed in an instruction register (IR) in the
processor 301. After processing and decoding, the processor
301 executes the instructions. For example, the object
retrieval module 204a defines instructions for triggering
retrieval of one or more dynamic content objects 206 on the
web page based on a user’s 201 input and for dynamically
retrieving the dynamic content objects 206 from one or more
local memory locations and/or remotely hosted memory loca-
tions. The object updating module 2045 defines instructions
for updating the document object model of the browser appli-
cation 205 using the retrieved dynamic content objects 206.
The object updating module 20456 defines instructions for
generating one or more nested dynamic content objects 206 in
the retrieved dynamic content objects 206. The object render-
ing module 204¢ defines instructions for dynamically render-
ing the retrieved dynamic content objects 206 onto the web
page from the document objects contained in the updated
document object model. The object rendering module 204¢
defines instructions for passing the retrieved dynamic content
objects 206 from one web page to another web page for
sharing data and resources. The function updating module
204d defines instructions for updating functionality of the

Aug. 11,2011

rendered dynamic content objects 206 on the web page at
runtime. The memory management module 204e¢ defines
instructions for automatically clearing dormant dynamic con-
tent objects 206 from the document object model for prevent-
ing cluttering and memory leaks in the document object
model. The guideline conformance module 204f defines
instructions for enabling the rendered dynamic content
objects 206 to conform to multiple content guidelines. The
content object accessibility module 204g defines instructions
for providing accessibility for each of the dynamic content
objects 206.

[0059] The processor 301 retrieves the instructions defined
by the object retrieval module 2044, the object updating mod-
ule 2045, the object rendering module 204¢, the function
updating module 2044, the memory management module
204e, the guideline conformance module 204/, and the con-
tent object accessibility module 204g of the application pro-
gramming interface 204, and executes the instructions.
[0060] At the time of execution, the instructions stored in
the instruction register are examined to determine the opera-
tions to be performed. The operations include arithmetic and
logic operations. The processor 301 then performs the speci-
fied operations. The operating system performs multiple rou-
tines for performing a number of tasks required to assign the
input devices 307, the output devices 310, and memory for
execution of the modules 204a, 2045, 204¢, 204d, 204¢, 204f,
and 204g of the application programming interface 204. The
tasks performed by the operating system comprise assigning
memory to the modules 204a, 2045, 204¢, 204d, 204e, 204f,
and 204g of the application programming interface 204 and
data, moving data between the memory unit 302 and disk
units, and handling input/output operations. The operating
system performs the tasks, on request, by the operations and
after performing the tasks, the operating system transfers the
execution control back to the processor 301. The processor
301 continues the execution to obtain one or more outputs.
The outputs of the execution of the modules 204a, 2045,
204c¢,204d, 204, 204/, and 204g of the application program-
ming interface 204 are displayed to the user 201 via the
browser application 205.

[0061] Disclosed herein is also a computer program prod-
uct comprising computer executable instructions embodied
in a non-transitory computer readable storage medium. As
used herein, the term “non-transitory computer readable stor-
age medium” refers to all computer readable media, for
example, non-volatile media such as optical disks or mag-
netic disks, volatile media such as a register memory, a pro-
cessor cache, etc., and transmission media such as wires that
constitute a system bus coupled to the processor 301, except
for a transitory, propagating signal.

[0062] The computer program product disclosed herein
comprises multiple computer program codes for creating and
managing dynamic content on a web page. For example, the
computer program product disclosed herein comprises com-
puter program codes for providing the application program-
ming interface 204 that interacts with the browser application
205, triggering retrieval of one or more dynamic content
objects 206 based on an input provided by the user 201,
dynamically retrieving the dynamic content objects 206 from
one or more of local memory locations and/or remotely
hosted memory locations, updating the document object
model of the browser application 205 using the retrieved
dynamic content objects 206, dynamically rendering the
retrieved dynamic content objects 206 onto the web page

US 2011/0197124 Al

from the document objects contained in the updated docu-
ment object model, and updating functionality of the rendered
dynamic content objects 206 on the web page at runtime. The
computer program product disclosed herein further com-
prises computer program codes for dynamically generating
one or more nested dynamic content objects 206 in the
retrieved dynamic content objects 206, automatically clear-
ing dormant dynamic content objects 206 from the document
object model for preventing cluttering and memory leaks in
the document object model, enabling the rendered dynamic
content objects 206 to conform to multiple content guide-
lines, and passing the retrieved the dynamic content objects
206 from one web page to another web page for sharing data
and resources. The computer program product disclosed
herein further comprises additional computer program codes
for performing additional steps that may be required and
contemplated for creating and managing dynamic content on
a web page.

[0063] The computer program codes comprising the com-
puter executable instructions are embodied on the non-tran-
sitory computer readable storage medium. The processor 301
of'the computer system 300 retrieves these computer execut-
able instructions and executes them. When the computer
executable instructions embodied on the non-transitory com-
puter readable storage medium are executed by the processor
301, the computer executable instructions cause the processor
301 to perform the method steps for creating and managing
dynamic content on a web page. In an embodiment, a single
piece of computer program code comprising computer
executable instructions performs one or more steps of the
computer implemented method disclosed herein for creating
and managing dynamic content on a web page.

[0064] For purposes of illustration, the detailed description
refers to the application programming interface 204 being run
locally on the computer system 300; however the scope of the
computer implemented method and system 200 disclosed
herein is not limited to the application programming interface
204 being run locally on the computer system 300 via the
operating system and the processor 301 but may be extended
to run over the network 203, for example, the internet by
employing a remote web server.

[0065] FIG. 4 exemplarily illustrates a flow diagram for
creating and managing dynamic content on a web page. Con-
sider an example where a user 201 provides 401 an input by
clicking on a link to retrieve a dynamic content object 206, for
example, a news section, on the webpage of a website
accessed using a browser application 205 such as a web
browser. The application programming interface 204 triggers
402 the retrieval of the news section based on the user’s 201
input. The application programming interface 204 retrieves
403 the news section from a remotely hosted memory loca-
tion, for example, a hosting server of the website. The appli-
cation programming interface 204 updates 404 the document
object model of the web browser with the retrieved dynami-
cally updated news section. The application programming
interface 204 renders 405 the dynamically updated news sec-
tion on the web page via the web browser. The news section is
updated periodically. The application programming interface
204 updates 406 the functionality of the news section with
new updated content. The user 201 closes the window that
displays the news section. The application programming
interface 204 clears 407 the news section from the document
object model of the web browser.

Aug. 11,2011

[0066] FIGS. 5A-5B, FIGS. 6A-6C, FIGS. 7A-7B, and
FIG. 8 exemplarily illustrate screenshots of web pages, where
the application programming interface 204 renders dynamic
content objects 206 onto the web pages based on an input
provided by a user 201. In an embodiment, the source prop-
erty of the dynamic content object 206 contains either a literal
code to be inserted into the web page, or a uniform resource
locator (URL) to reference an external source. For example,
as exemplarily illustrated in FIG. 5A, the application pro-
gramming interface 204 defines a method, for example, a
“$.get method” in JavaScript to access a weather application
programming interface code of Yahoo! Inc. The source prop-
erty can be customized to include the rendered output of
Yahoo’s weather application. The user 201 provides an input
to view the current weather by clicking on a link 501 on the
web page. Based on the user’s 201 input, the application
programming interface 204, on accessing the weather appli-
cation programming interface code of Yahoo! Inc., receives
extensible markup language (XML) content from the weather
application programming interface code of Yahoo! Inc.,
parses the received XML content using an XMLHttpRequest
object and conditionally adds selective content to the web
page required to render the output of Yahoo’s weather appli-
cation.

[0067] Inanembodiment,dynamic content objects 206 can
remain open while others are opened on the same web page.
The dynamic content objects 206 declared within the same
array can be closed automatically when other dynamic con-
tent objects 206 are opened. In an embodiment, when a prior
dynamic content object 206 is already open, the element
triggering the application programming interface 204 is
allowed to reopen the same dynamic content object 206 to
instantiate a dynamic content object 206 with new settings. In
an embodiment, when the dynamic content object 206 is
closed, the keyboard focus is automatically returned to the
element triggering the application programming interface
204. For example, the application programming interface 204
defines a property declaration “returnFocus: true” for declar-
ing that the focus will return to the triggering element when
the associated dynamic content object 206 is closed.

[0068] In an embodiment, the application programming
interface 204 defines an “is Static” property for allowing a
dynamic content object 206 to be inserted into the web page
in a specific location instead of being inserted after the trig-
gering element. The “is Static” property contains an object or
CSS selector for the desired container tag where the dynamic
content is inserted. In an embodiment, as exemplarily illus-
trated in FIG. 5B, dynamic tabs 502, 503, and 504 are shown
as dynamic content objects 206. Each of the tabs 502, 503,
and 504 imports external content from a file, for example, a
“tabs.html” file created in HTML. The application program-
ming interface 204 assigns a tab functionality to a specific
dynamic content object grouping by setting an “isTab” prop-
erty to true within each related dynamic content object dec-
laration. The user 201 provides an input by selecting one or
more of the tabs 502, 503, and 504 provided on the screen.
Based on the user’s 201 input, the relevant selected tab 502,
503, or 504, which is enabled by setting “isTab” to true, opens
on the screen. The setting specifies that screen reader acces-
sible hidden text will automatically be appended to the link
text for each associated triggering link. The screen reader
accessible hidden text is invisible to sighted users 201, and
has no effect on the page layout. For example, when a tab link
502, 503, or 504 is selected, the hidden text “tab selected” is

US 2011/0197124 Al

appended to the link text. Similarly, the unselected tabs 502,
503, or 504 in the group will have “tab” appended to the link
text instead. The hidden text is automatically changed to
accurately reflect the current state of each tab 502, 503, and
504 at runtime.

[0069] When “isTab” is set to true, the following property is
used by default within the screen reader accessible hidden
text. tabRole: “tab” which causes “tab” or “tab selected” to be
announced based on the active state. For example, a nested tab
could be declared as tabRole: “sub tab” or a panel could be
declared as tabRole: “panel”. Any textual value can beused to
describe the role of the tab 502, 503, or 504 as long as the
value reflects the role of the dynamic content object 206.
Similarly, “tabState: selected” can be overridden during setup
or at runtime to allow screen reader localization support in
multiple linguistic dialects to reflect the active state of the
selected tab 502, 503, or 504. In an embodiment, the dynamic
content object 206 is set to open when the web page loads.
The mode property controls how the dynamic content is
fetched. The default mode value is 0. When the mode value is
0, the dynamic content within the source property is inserted
into the document object model as a dynamic content object
206. When the mode value is set to 1, external content is
automatically fetched and inserted into the document object
model as a dynamic content object 206 using the path string
declared in the source property.

[0070] When the mode value is set to 2, the application
programming interface 204 uses the get method to fetch
remote content for full customization using a path string
declared in the source property. The type of data to be
returned to the callback function is, for example, XML data,
HTML data, JavaScript object notation (JSON) data, JavaS-
cript object notation with padding (JSONP) data, text, etc.
When the mode value is set to 3, the application programming
interface 204 uses a “getJSON” method to fetch remote con-
tent for full customization using the path string declared in the
source property. When the mode value is set to 4, the appli-
cation programming interface 204 uses a “getScript” method
to fetch remote content for full customization using the path
string declared in the source property. When the mode value
is set to 5, the application programming interface 204 uses a
“post” method to fetch remote content for full customization
using the path string declared in the source property. When
the mode value is set to 6, the application programming
interface 204 uses an asynchronous JavaScript and xml
(AJAX) method to fetch remote content for full customiza-
tion using options declared in the ajaxOptions collection
object. There are four AJAX methods, for example, “befor-
eSend”, “success”, “complete”, and “error” that should not be
declared in ajaxOptions. These methods already point to
overridable methods within each dynamic content object 206
to allow full customization.

[0071] Inanembodiment, an optional array of one or more
supporting JavaScript (JS) files will be run once when the
initial dynamic content object 206 is created. These JavaS-
cript files run before any dynamic content markup is ren-
dered. For example, the drag and drop 601 implementation, as
exemplarily illustrated in FIGS. 6A-6C, loads an interactive
form which dynamically loads the application programming
interface 204. Supporting scripts then execute to add event
handlers to each form field after the dynamic content object
206 is rendered. Inan embodiment, an optional array of one or
more supporting JS files execute before the dynamic content
object 206 is opened. In another embodiment, an optional

Aug. 11,2011

array of one or more supporting IS files execute after the
dynamic content object 206 is closed. In another embodi-
ment, optional JS scripts execute after the dynamic content
object 206 has finished loading.

[0072] Inanembodiment, built-in functions are available to
handle events, for example, resizing, scrolling, mouse clicks,
mouse movements, key strokes, and errors. Built-in functions
are also available to handle special events, for example,
executing a script before a dynamic content object 206 is
closed, executing a script after the dynamic content object
206 is closed, executing a script when focus moves out of the
dynamic content object 206, executing a script when the
dynamic content object 206 timeout in milliseconds occurs,
etc. Built-in functions are also available to handle events
pertaining to core functionality, for example, forcing the
dynamic content object 206 to open, forcing the dynamic
content object 206 to close, returning true or false if the
specified dynamic content object 206 is still in the process of
loading, returning true if the specified dynamic content object
206 has finished loading and false otherwise, forcing leading
screen readers to recognize dynamic content changes imme-
diately, etc.

[0073] Inanembodiment, a class name for the outerHTML
tag of the dynamic content object 206 can be declared
uniquely for a declaration if the dynamic content is referenc-
ing an external CSS file. When fetching local or remote con-
tent that contains a close link, the class name for the link must
match the class name declaration in the “closeClassName”
property of the same dynamic content object 206. This will
ensure that the necessary event handlers are added correctly
to each close link when rendered. The application program-
ming interface 204 automatically positions dynamic content
objects 206 in a specific location on the screen using posi-
tional properties, for example, autoPosition, autoFix, etc. The
autoPosition and autoFix properties are used to automatically
position dynamic content objects 206 in specific locations on
a view port of the screen at runtime.

[0074] Dynamic content objects 206 can be used for vari-
ous purposes. For example, dynamic content objects 206 can
be used for providing an interactive lightbox, an information
prompt, a drop down menu, a help message, a calendar picker,
alogin prompt, a timeout notice, etc. These common dynamic
content objects 206 demonstrate different implementation
types with unique properties during the setup process. For
example, as illustrated in FIGS. 6 A-6C, the application pro-
gramming interface 204 loads an external poetry excerpt 602
from a file, for example, overlays.html, which then registers a
second level of tooltip dynamic content objects 206 that
remain dormant until the triggering element is activated. The
application programming interface 204 dynamically imports
the files “jquery.acc.dnd.js”, “setup.acc.dnd.js”, and “setup.
acc.tooltips.js”, as exemplarily illustrated in FIGS. 6A-6C,
when the rendered dynamic content objects 206 are activated
on the web pages. The tooltips are pulled from the “overlays.
html!” file based on the user’s 201 input. For example, the
application programming interface 204 pulls a list of menu
options 603 from the “overlays.html” file to edit information,
electronic mail addresses, passwords, and preferences 605
associated with the user’s 201 profile as exemplarily illus-
trated in FIG. 6B. In another example, a help overlay displays
a custom help message from the “overlays.html” file, which
overrides the default position parameter to display the mes-
sage on the left side of a help icon 604. In another example as
illustrated in FIG. 6C, a link to a poetry excerpt 602 loads an

US 2011/0197124 Al

external poetry excerpt 606 from the “overlays.html” file
which registers a second level tool tip. The application pro-
gramming interface 204 dynamically loads these additional
overlay instances when the overlay is activated; otherwise the
overlay instances remain dormant.

[0075] Inan embodiment, the standard functionality of the
application programming interface 204 can be overridden.
For example, the application programming interface 204
receives an application programming interface (API) call-
back from Google™ Maps based on the given latitude and
longitude values 701 as exemplarily illustrated in FIG. 7A.
The latitude and longitude values 701 can be changed at
runtime to designate new coordinates to fetch every time the
dynamic content object 206 is opened. When a user 201
selects a tab from a list of tabs 702, 703, 704, 705, and 706 as
exemplarily illustrated in FIG. 7B, the application program-
ming interface 204 receives the associated content from the
callback received from the Google™ Maps application based
on the selected tab 702, 703, 704, 705, or 706. Each of the
dynamic tabs 702, 703, 704, 705, and 706 dynamically
imports a map associated with each tab 702, 703, 704, 705,
and 706 from an external file. When the web page loads, the
application programming interface 204 automatically
imports and displays the map associated with one of the tabs
702, 703, 704, 705, and 706 on the web page.

[0076] In an embodiment, the application programming
interface 204 disclosed herein enables conditional locking
which is a method of freezing dynamic content objects 206 in
their current open or closed state, allowing for conditional
processing to unlock these dynamic content objects 206 later.
Conditional locking is useful for displaying a form that
requires the user’s 201 input before the form can be dis-
missed, or as long as child dynamic content objects 206
remain open within a locked parent dynamic content object
206. A user 201 provides an input for opening a floating
checkbox 801 on the web page to lock dynamic content
objects 206 of the web page as exemplarily illustrated in FIG.
8. When an overlay is activated and the floating checkbox 801
has been checked, the floating checkbox 801 locks all the
dynamic content objects 206. The floating checkbox 801 fixes
itself to the bottom of the screen. The floating checkbox 801
needs to be unchecked to unlock the dynamic content objects
206 on the screen. Also exemplarily illustrated in FIG. 8, is a
button link 802 provided on the web page for loading a
dynamic content object 206, for example, a poem.

[0077] Since the application programming interface 204
disclosed herein supports jQuery AJAX API methods, for
example, load, get, getScript, getISON, post, and AJAX, all
remotely hosted APIs and server side callbacks receive the
same level of quality, performance, and accessibility as
locally referenced data sources. The application program-
ming interface 204 acts as a portal to utilize publicly available
remote-fetching methods within the jQuery APL allowing
applications to insert dynamic content objects 206 into the
web page only when a user 201 performs a specific action
within a web page or web application. The application pro-
gramming interface 204 can pull content from another
dynamic content object 206 within the same document object
model to be rendered in a specific location on the web page
based on developer preferences, allowing the developer the
flexibility to capture content from any location, locally or
remotely, to be rendered as desired on the web page at runt-
ime.

Aug. 11,2011

[0078] The configuration of the application programming
interface 204 disclosed herein is handled by the developer
during creation of the functionality for a web page or appli-
cation. Furthermore, since the nested dynamic content
objects 206 are instantiated only when needed, and the closed
dynamic content objects 206 are automatically removed from
the document object model to prevent cluttering and memory
leaks, the web page performance and reliability is guaranteed
no matter how long the web page is used by repeatedly open-
ing and closing the dynamic content objects 206.

[0079] FIGS. 9A-9B exemplarily illustrate a code compo-
nent that defines a document object in a document object
model using a retrieved dynamic content object 206. The code
component as exemplarily illustrated in the FIG. 9A triggers
a dynamic content object 206 from a document, for example,
raven.txt, containing textual information using the AJAX
retrieval mode. The code component uses an initial setup file
to setup custom parameters for a function call to the applica-
tion programming interface 204 using an AJAX method. The
custom parameters comprise, for example, a URL, a trigger-
ing element associated with the name of the dynamic content
object 206, for example, #showRaven, an identification
parameter for the code component, a role parameter, a binder
parameter, a mode property, an “is Static” property, a class
name parameter, and one or more options declared in a func-
tion called ajaxOptions. The URL is a parameter to be
declared in the function ajaxOptions for retrieving the
dynamic content object 206 and importing the dynamic con-
tent. The code component comprises a function with param-
eters, for example, parameters to configure the application
programming interface 204, one or more options, and a
request object to request for a document.

[0080] The code component of the application program-
ming interface 204, as exemplarily illustrated in FIG. 9B,
comprises a function, for example, fn.morph() defined in
JavaScript, used to define a document object or DOM node in
the document object model with a dynamic content object
206 at runtime. A key/value mapping object configures the
functionality of the dynamic content objects 206. Defining
the DOM node with a dynamic content object 206 comprises
specifying identification for the dynamic content object 206
as a parameter in the function fn.morph() The dynamic con-
tent object 206 is associated with a role. The dynamic content
object 206 is prevented from being closed from the keyboard
by screen reader users 201. Boundary information associated
with the location of the dynamic content object 206 is hidden
from the screen reader users 201. The dynamic content object
206 is made draggable by setting a property, for example,
isDraggable, to true. A drop zone on the screen is specified for
dragging the dynamic content object 206. The code compo-
nent configures support for screen reader users 201 to auto-
matically drag and drop the dynamic content object 206.

[0081] In an embodiment, the application programming
interface 204 can be globally extended, for example, by add-
ing plug-ins to a namespace associated with the application
programming interface 204 during setup or at runtime, which
can be used to enhance the functionality of the dynamic
content objects 206. The dynamic content objects 206 can be
locally extended by adding extensions to the existing
namespace of the application programming interface 204, for
example, “dc” namespace during setup or at runtime, which
can be used to enhance the functionality of individual
dynamic content objects 206.

US 2011/0197124 Al

[0082] FIG.10exemplarily illustrates a chaticon 1001 on a
web page for triggering a chat component 1002 as a dynamic
content object 206 on the web page. The chat component
1002 allows entry of a message and name of the user 201
using a message field and a name field respectively. The chat
component 1002 is rendered onto the display screen of the
user’s 201 computing device 202. The chat component 1002
is also periodically updated with new incoming messages.
The chat icon 1001 is the triggering element for a chat
dynamic content object 206, which is fixed to a central posi-
tion in the viewport when a chat window is first opened. The
chat dynamic content object 206, when open, includes sur-
rounding compass point icons 1003 that dynamically fix the
chat dynamic content object 206 to a relative location in the
viewport when activated. When a message and name value is
entered within the chat dynamic content object 206 and a
return key is pressed, the chat message is posted to a server
side script, and the new message is simultaneously populated
within every page that contains an open chat dynamic content
object 206. Whenever a new message is rendered within the
chat dynamic content object 206, the new message is auto-
matically announced to screen reader users 201 using auto
stacking, so that multiple messages can be announced
sequentially without causing speech interruptions when
queuing sequential announcements.

[0083] FIG. 11 exemplarily illustrates images rendered as
dynamic content objects 206 on a web page by the application
programming interface 204. The images are standard image
tags contained within an unordered list markup. When a user
201 clicks a button 1101, the keyboard focus is set and the
images are dynamically converted into draggable dynamic
content objects 206. After conversion, an area titled “Uni-
verse” 1102 and an area titled “Galaxy” 1103 are configured
as drop targets allowing images to be dragged from “Uni-
verse” 1102 to “Galaxy” 1103 by using the mouse. Further-
more, each dynamic content object 206 is configured to be
draggable using the keyboard. For example, the user 201
clicks the button 1101 to check keyboard focus. The user 201
can tab between the draggable dynamic content objects 206.
The user 201 presses “enter” on the dynamic content objects
206 that the user 201 wishes to toggle draggability. The user
201 presses “tab” on the keyboard to drop the target image,
and presses “enter” on the keyboard to drop the previously
selected objects 206 in the new locations. The draggable
dynamic content objects 206 that include specified drop tar-
gets are automatically accessible to screen reader and key-
board only users 201 via keyboard accessible drag and drop
links that are conditionally displayed when they receive
focus.

[0084] FIG. 12 exemplarily illustrates extensible markup
language (XML) generated drop down menus rendered as
nested dynamic content objects 206 on a web page by the
application programming interface 204. The content shown
in the text block 1201 is edited by activating an edit content
link, which opens an editor as a dynamic content object 206.
The application programming interface 204 programmati-
cally generates a menu bar from an external XML file, for
example, menubar.xml, and renders the menu bar as a nested
dynamic content object 206. The menu bar comprises the
options “file”, “edit”, “view”, “tools”, and “help”. The tabs
titled “file”, “edit”, “view”, “tools”, “help”, etc., are config-
ured to execute external files to generate nested dynamic
content objects 206 as the content of drop down menus.
Whenever the user 201 activates the menu bar link, the appli-

Aug. 11,2011

cation programming interface 204 renders a nested dynamic
content object 206 as a drop down menu containing a list of
option links, which when clicked, generate another nested
dynamic content object 206 to temporarily appear as a
dynamically positioned tooltips. The text of the tooltips is
automatically announced to the screen reader users 201. The
editor dynamic content object 206 displays a text area with
the content from the text block 1201. The application pro-
gramming interface 204 renders the options in the menu bar
and the nested dynamic content objects 206 as a drop down
menu containing a list of option links that are used to edit the
content in the text area. When the editor dynamic content
object 206 is closed, the content of the text area 1201 is
automatically added to the text block 1201.

[0085] FIG. 13 exemplarily illustrates an audio visual
player 1302 rendered as a nested dynamic content object 206
on a web page by the application programming interface 204.
The application programming interface 204 renders a dialog
box on the browser application 205 as a nested dynamic
content object 206. A form comprising options to select a
featured presentation programmatically configures a player
1302 that is rendered as a dynamic content object 206 when
the user 201 activates a “go” button 1301. The go button 1301
is repeatedly activated to reflect new selections. The player
dynamic content object 206 comprises a dynamically gener-
ated Flash player 1302, which is an alternative option for
browsers that do not support Flash. A drag icon 13024 at the
top left hand corner of the player dynamic content object 206
is used to drag the player dynamic content object 206 to a
location of the screen. The location of the player dynamic
content object 206 will remain persistent after the player
dynamic content object 206 is repeatedly closed and
reopened by clicking the go button 1301.

[0086] It will be readily apparent that the various methods
and algorithms disclosed herein may be implemented on
computer readable media appropriately programmed for gen-
eral purpose computers and computing devices. As used
herein, the term “computer readable media™ refers to non-
transitory computer readable media that participate in provid-
ing data, for example, instructions that may be read by a
computer, a processor or a like device. Non-transitory com-
puter readable media comprise all computer readable media,
for example, non-volatile media, volatile media, and trans-
mission media, except for a transitory, propagating signal.
Non-volatile media comprise, for example, optical disks or
magnetic disks and other persistent memory volatile media
including a dynamic random access memory (DRAM),
which typically constitutes the main memory. Volatile media
comprise, for example, a register memory, processor cache, a
random access memory (RAM), etc. Transmission media
comprise, for example, coaxial cables, copper wire and fiber
optics, including the wires that constitute a system bus
coupled to a processor. Common forms of computer readable
media comprise, for example, a floppy disk, a flexible disk,
hard disk, magnetic tape, any other magnetic medium, a com-
pactdisc-read only memory (CD-ROM), digital versatile disc
(DVD), any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a random
access memory (RAM), a programmable read only memory
(PROM), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM), a flash memory, any other memory chip
or cartridge, or any other medium from which a computer can
read. A “processor” refers to any one or more microproces-

US 2011/0197124 Al

sors, central processing unit (CPU) devices, computing
devices, microcontrollers, digital signal processors or like
devices. Typically, a processor receives instructions from a
memory or like device, and executes those instructions,
thereby performing one or more processes defined by those
instructions. Further, programs that implement such methods
and algorithms may be stored and transmitted using a variety
of media, for example, the computer readable media in a
number of manners. In an embodiment, hard-wired circuitry
or custom hardware may be used in place of, or in combina-
tion with, software instructions for implementation of the
processes of various embodiments. Thus, embodiments are
not limited to any specific combination of hardware and soft-
ware. In general, the computer program codes comprising
computer executable instructions may be implemented in any
programming language. Some examples of languages that
can beused comprise C, C++, C#, Perl, Python, or JAVA. The
computer program codes or software programs may be stored
on or in one or more mediums as an object code. The com-
puter program product disclosed herein comprises computer
executable instructions embodied in a non-transitory com-
puter readable storage medium, wherein the computer pro-
gram product comprises computer program codes for imple-
menting the processes of various embodiments.

[0087] The present invention can be configured to work in
a network environment including a computer that is in com-
munication, via a communications network, with one or more
devices. The computer may communicate with the devices
directly or indirectly, via a wired or wireless medium such as
the Internet, a local area network (LAN), a wide area network
(WAN) or the Ethernet, token ring, or via any appropriate
communications means or combination of communications
means. Hach of the devices may comprise computers such as
those based on the Intel® processors, AMD® processors,
UltraSPARC® processors, Sun® processors, IBM® proces-
sors, etc. that are adapted to communicate with the computer.
Any number and type of machines may be in communication
with the computer.

[0088] The foregoing examples have been provided merely
for the purpose of explanation and are in no way to be con-
strued as limiting of the present invention disclosed herein.
While the invention has been described with reference to
various embodiments, it is understood that the words, which
have been used herein, are words of description and illustra-
tion, rather than words of limitation. Further, although the
invention has been described herein with reference to particu-
lar means, materials, and embodiments, the invention is not
intended to be limited to the particulars disclosed herein;
rather, the invention extends to all functionally equivalent
structures, methods and uses, such as are within the scope of
the appended claims. Those skilled in the art, having the
benefit of the teachings of this specification, may affect
numerous modifications thereto and changes may be made
without departing from the scope and spirit of the invention in
its aspects.

I claim:
1. A computer implemented method for creating and man-
aging dynamic content on a web page, comprising:
providing an application programming interface that inter-
acts with a browser application of a user, wherein said
browser application comprises a plurality of document
objects contained in a document object model;

Aug. 11,2011

triggering retrieval of one or more of a plurality of dynamic
content objects on said web page based on an input
provided by said user;

dynamically retrieving said one or more dynamic content

objects from one or more of local memory locations and
remotely hosted memory locations by said application
programming interface;
updating said document object model of said browser
application using said retrieved one or more dynamic
content objects by said application programming inter-
face, wherein said retrieved one or more dynamic con-
tent objects define said document objects in said docu-
ment object model;
dynamically rendering said retrieved one or more dynamic
content objects onto said web page from said document
objects contained in said updated document object
model by said application programming interface; and

updating functionality of said rendered one or more
dynamic content objects on said web page at runtime by
said application programming interface;

whereby said application programming interface in com-

munication with said browser application creates and
manages said dynamic content on said web page.

2. The computer implemented method of claim 1, further
comprising dynamically generating one or more nested
dynamic content objects in said retrieved one or more
dynamic content objects by said application programming
interface, wherein said dynamically generated one or more
nested dynamic content objects are dormant prior to activa-
tion of said retrieved one or more dynamic content objects.

3. The computer implemented method of claim 1, further
comprising providing accessibility for each of said one or
more dynamic content objects by said application program-
ming interface.

4. The computer implemented method of claim 1, further
comprising enabling said rendered one or more dynamic con-
tent objects to conform to a plurality of content guidelines by
said application programming interface.

5. The computer implemented method of claim 1, further
comprising automatically clearing dormant dynamic content
objects from said document object model by said application
programming interface for preventing cluttering and memory
leaks in said document object model.

6. The computer implemented method of claim 1, wherein
said rendered one or more dynamic content objects are inter-
pretable by output devices that render said retrieved one or
more dynamic content objects to said user.

7. The computer implemented method of claim 1, further
comprising passing said retrieved one or more dynamic con-
tent objects from said web page to another web page by said
application programming interface for sharing data and
resources.

8. The computer implemented method of claim 1, wherein
said application programming interface supports a plurality
of browser applications accessible over a plurality of com-
puting devices.

9. A computer implemented system for creating and man-
aging dynamic content on a web page, comprising:

an application programming interface that interacts with a

browser application of a user, wherein said browser
application comprises a plurality of document objects
contained in a document object model, wherein said
application programming interface comprises:

US 2011/0197124 Al

anobjectretrieval module that triggers retrieval of one or
more of a plurality of dynamic content objects on said
web page based on an input provided by said user;

said object retrieval module that dynamically retrieves
said one or more dynamic content objects from one or
more of local memory locations and remotely hosted
memory locations;

an object updating module that updates said document
object model of said browser application using said
retrieved one or more dynamic content objects,
wherein said retrieved one or more dynamic content
objects define said document objects in said docu-
ment object model;

an object rendering module that dynamically renders
said retrieved one or more dynamic content objects
onto said web page from said document objects con-
tained in said updated document object model; and

a function updating module that updates functionality of
said rendered one or more dynamic content objects on
said web page at runtime.

10. The computer implemented system of claim 9, wherein
said object updating module dynamically generates one or
more nested dynamic content objects in said retrieved one or
more dynamic content objects, wherein said dynamically
generated one or more nested dynamic content objects are
dormant prior to activation of said retrieved one or more
dynamic content objects.

11. The computer implemented system of claim 9, wherein
said application programming interface further comprises a
memory management module that automatically clears dor-
mant dynamic content objects from said document object
model for preventing cluttering and memory leaks in said
document object model.

12. The computer implemented system of claim 9, wherein
said application programming interface further comprises a
guideline conformance module that enables said rendered
one or more dynamic content objects to conform to a plurality
of content guidelines.

13. The computer implemented system of claim 9, wherein
said application programming interface further comprises a
content object accessibility module that provides accessibil-
ity for each of said one or more dynamic content objects.

14. The computer implemented system of claim 9, wherein
said object rendering module passes said retrieved one or
more dynamic content objects from said web page to another
web page for sharing data and resources.

15. A computer program product comprising computer
executable instructions embodied in a non-transitory com-
puter readable storage medium, wherein said computer pro-
gram product comprises:

afirst computer program code for providing an application

programming interface that interacts with a browser

13

Aug. 11,2011

application of a user, wherein said browser application
comprises a plurality of document objects contained in a
document object model;

a second computer program code for triggering retrieval of
one or more of a plurality of dynamic content objects
based on an input provided by said user;

a third computer program code for dynamically retrieving
said one or more dynamic content objects from one or
more of local memory locations and remotely hosted
memory locations by said application programming
interface;

a fourth computer program code for updating said docu-
ment object model of said browser application using said
retrieved one or more dynamic content objects by said
application programming interface, wherein said
retrieved one or more dynamic content objects define
said document objects in said document object model;

a fifth computer program code for dynamically rendering
said retrieved one or more dynamic content objects onto
said web page from said document objects contained in
said updated document object model by said application
programming interface; and

a sixth computer program code for updating functionality
of said rendered one or more dynamic content objects on
said web page at runtime by said application program-
ming interface.

16. The computer program product of claim 15, further
comprising a seventh computer program code for dynami-
cally generating one or more nested dynamic content objects
in said retrieved one or more dynamic content objects by said
application programming interface, wherein said dynami-
cally generated one or more nested dynamic content objects
are dormant prior to activation of said retrieved one or more
dynamic content objects.

17. The computer program product of claim 15, further
comprising an eighth computer program code for automati-
cally clearing dormant dynamic content objects from said
document object model by said application programming
interface for preventing cluttering and memory leaks in said
document object model.

18. The computer program product of claim 15, further
comprising a ninth computer program code for enabling said
rendered one or more dynamic content objects to conform to
a plurality of content guidelines by said application program-
ming interface.

19. The computer program product of claim 15, further
comprising a tenth computer program code for passing said
retrieved one or more dynamic content objects from said web
page to another web page by said application programming
interface for sharing data and resources.

sk sk sk sk sk

