United States Patent

US007210098B2

(12) (10) Patent No.: US 7,210,098 B2
Sibal et al. 45) Date of Patent: Apr. 24,2007
(54) TECHNIQUE FOR SYNCHRONIZING 6,490,603 Bl 12/2002 Keenan et al. 707/513
VISUAL AND VOICE BROWSERS TO 6,594,348 B1* 7/2003 Bjurstrom et al. 379/88.13
ENABLE MULTI-MODAL BROWSING 6,766,298 B1* 7/2004 Dodrill et al. 704/270.1
2003/0071833 Al 4/2003 Dantzig et al. 345/700
75 . . : . 2003/0187656 Al* 10/2003 Goose et al. 704/270.1
(7% Tnventors: f andee}; Sllll’.al’ SS COtChtPIl\?}n(S[’Jg)J (US); 2003/0208472 A1* 112003 Phamoooooorrrorreen 707/2
mran Bashir, Summit, 2004/0006474 Al* 1/2004 Gong et al. 704/270.1
(73) Assignee: Kirusa, Inc., New Providence, NJ (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Kennedy et al., “HTML The Definitive Guide”, copyright 1998, pp.
patent is extended or adjusted under 35 211-215.%
U.S.C. 154(b) by 326 days. * cited by examiner
(21) Appl. No.: 10/369,361 Primary Examiner—Thu V. Huynh
) (74) Attorney, Agent, or Firm—Ash Tankha of Counsel,
(22) Filed: Feb. 18, 2003 Lipton, Weinberger & Husick
(65) Prior Publication Data (57) ABSTRACT
US 2003/0182622 Al Sep. 25, 2003)))
A system and method for interacting with content, such as
Related U.S. Application Data web-based markup content, using visual and voice browsers.
. o A first browser facilitates communication in a first mode
(60) Provisional application No. 60/357,924, filed on Feb. (e.g., an HTML browser that facilitates visual/tactile inter-
18, 2002. action with HTML content), and a second browser facilitates
51y Int. Cl1 communication in a second mode (e.g., a VXML browser
Gh Gn 0;$F 1 500 2006.01 that facilitates audio interaction with VXML content).
(:).)) HTML and VXML content is created that: (1) indicates a
(52) US.CL ...eeeens 715/513; 715/501.1; 715/530; correspondence between HTML and VXML pages that
. . . 704/270.1 represent the same underlying content; and (2) contains
(58) Field of Classification Search 715/513, specialized tags that indicate information to be send from
715/501.1, 522, 530, 738, 230; 704/275, one browser to the other to synchronize each browser to
o 704/2705 270.1 equivalent parts of the content. The HTML browser is
See application file for complete search history. adapted to use relative links as signals that information is to
(56) References Cited be sent to the VXML browser, and the platform on which the

U.S. PATENT DOCUMENTS

6,101,510 A 8/2000 Stone et al. 707/513
6,282,511 B1*

6,349,132 B1*

8/2000 Stone et al.
8/2001 Mayer
2/2002 Wesemann et al. 379/88.17

GET Request for "foo.html"

VXML browser runs is adapted to recognize a “hit” on its
own port 80 as a signal that information is to be sent to the
HTML browser.

11 Claims, 7 Drawing Sheets

ARCHITECTURE 100

@

“foo.html*

—

COMPUTING DEVICE 102

MULTI-MODAL PLATFORM

110
BROWSER 104
?/;t “;Erresp- Get "foo.vxml"
page
PAGE 106 VOICE @ »
Audio YO @ BROWSER 112 -
Mail Weather P "foo.vxmi"
\\\¥ . @ WEB SERVER 120
Finance News |
™ 108 :
T 108
~— 108 SPEECH
RECOGNITION
ENGINE 114

]

US 7,210,098 B2

Sheet 1 of 7

Apr. 24,2007

U.S. Patent

ocrugAgmsaam | (8

_—_Ex>.00%:

L OId

HO33dS

P11 INIONS
NOILINDSOO3N

>

®

W WXA 004, 19D

001 34NLOALIHOYVY

0Ll

30I0A

N

SEIN aoueuiq

N

[/]
[/]/

ZlL1 ¥3SMOodd

A

Jayieap [T

AWJOd1v1d TvAOW-1L' 1IN

®

JWiY o0y,

Juiiy ooy, Joy3senbay (39

obed JWXA
‘dsa.109 199

901 39Vd

01 Y3smoud

201 IDIAFA ONILNdINOD

US 7,210,098 B2

Sheet 2 of 7

Apr. 24,2007

U.S. Patent

¢ 'Old

<TNLH/>

<AQOo4g/>-

<43 1INID/><TTVINS/><Hg> pansasal siybu |y<yg>
wo9 004 WbuAdoD<TIYWS>

<1=3Z|S "H>

<y31INID>

<H3INID/>

<Y/>BWOH 004 <, Wiy Xapul,=jaly
V><y8><H31IN3I D>

<WHOd/>
<pipepd=allBu pIadIABPY,=8N|EA
uappiy=adA} 1 NdNI> <, ubig,=anjea Juagns=adA L NdNI>
<ME><Hg><pmssed=aweu g|.=az|s piomssed=adh} {NdNI>
<Mg>plomssed
<HE><Hg> <. (ULOJPIE SN #,)3)eBiABu MOpUIM,=SN00 U0 ulbo|=8Weu g1=92Is | NdNI>
<+g>:J| 004
<Jsod=poyjaw ||lew=2.s'dweguibol=dpimel/wod 0o} o dem// . diy=uonoe Juubis, =aweu NHO 5>
<319vL/><Aq0aLl/><dl/><QLl><dl>
<g/>|IBN<g><V/><0=1opJog 9L=Upim 1B 1ew =2is gl =1ubiay OWI><, Wiy Iew, =31y v><d1>
. <yl>
<M1/><QL/> <V/><0u=1apioq JB uodlA-pal,=0Is DN|><, W Xapul,=jely v><dL>
<dl>
<AQOg.Ll>
<314av.L>
<Bf><,[Bqo|BesnipiE esnu #,=loiy ,jeqojbesnipy, =sweu e>
<AQOg>
<QVvaH/>
<, JWXA 00}/W02 00}/ djiu,=]usuoo

T o0z

N

JINTJwxA, =AInbe-dyy Y13 _\,_/ 202

<31LIL/>llely 0od<31LIL>
ivd <Qv3aH>
02 <TALLH>

US 7,210,098 B2

Sheet 3 of 7

Apr. 24,2007

U.S. Patent

€ Old

</,,pmssed [o]swioyuawnoop, =idxs ,

A\:

</.[eqolBesniy,,=idxe , 31YDIAYN MNIT YSNHIM =sweu ubjssex
</.prooyeA, =idxs INTYA LD3r90 vSNHIM .=oweu ubisses
</,2neaubo[glswioyuawnoop,,=idxa |~ A1H3IJONd 103rd0 vSNHIM =sweu ubjsse>

<uondo/>ueiw|<, 00 Jyseq uelw =anjea uondo>

WHOL LINGNS VYSNY LSlsisweu ,/Z808:3s0y|e20//:diy,=1xau ywgns>
</ uubis, =dxa WHO4 LINGNS vSNYIM ™ .=sweu ubisses

<|WXA/>
<WJoj/>
<420|q/>

_ _ L ~ SN0 L3S VSNYM ~ JLVOIAYN INIT VSNuN
INTYA LOINE0 VSNY ALYIHONd LO3r80 VSN .=ISIowey ,/z808:1s0y[eo0y//:dny,=Ixeu yuans>

20[9> gle

_ ___ <PIdlY/><palily/>

SNO04 135 vSNuIM =dweu ubisse>

9l€E

143
dwoidy><idwosd><pa)|l

<} f><} ><pally> oLe

<U01}do/>0 1 D<,BSNIN0)D,=an|2A uodo=

<jdwo.d;>Q| 0oyeA<,000002,=)noawi} yJdwoids

<, plooyef =sweu pjaly>

< MIOPI, =PI WLIO)>

<Wo}/> 80¢

<o019/>

90¢
voc

<ydwosd/sw Bulubig<jdwolds><320|g>
<, Wiojuiubis, =p; wioj>

<nuawy/>

<8210U2/>U| UBIS <, WIojUIUBIS#, =1X8U a010yd>
<Jdwouidss<,00002.=3noswi Jdwoids

<, /eqo|Besniy, =p! nusw>

<,0’ |, =UOISIaA [UXA>

<¢,,0'L,=UOISIaA JWXE>

N

A1}

US 7,210,098 B2

Sheet 4 of 7

Apr. 24,2007

U.S. Patent

v "Old

yor -
HIOVNVIN “«———»
IYAOW-ILINN ¥3IM3IA TNLH

P01 ¥3SMOoug

U.S. Patent Apr. 24,2007 Sheet 5 of 7 US 7,210,098 B2

| .
>
i \e \\\ N
. o
-
(=]
(]
©
o
brs
£
|
o]
s
K1)
o.
H
)
S
w o
Q
2 g WL
I~ -—
Q (=]
wn 7]
o
1]
Q.
o %
o
w
o
Q
T3]

w
(=]
n

US 7,210,098 B2

Sheet 6 of 7

Apr. 24,2007

U.S. Patent

9 '9Id

€09

131 124y

Jabeue
|EPOWINIA

Jasmoug
[BNSIA

Jasmolg
9010/

¢09

US 7,210,098 B2

Sheet 7 of 7

Apr. 24, 2007

U.S. Patent

L "OI4

€0.

uoneaioe
YUl ‘uoissILgns
wioy ‘Buiy wio4

SJUSAS

uojiubooay labeuep

lepownIniy

e Ao

uono3s|esg uonoeles
JBWWeI) oo

Jasmolg
3I0A

J9SMO.Ig
[EensIA

0.
L0.

US 7,210,098 B2

1

TECHNIQUE FOR SYNCHRONIZING
VISUAL AND VOICE BROWSERS TO
ENABLE MULTI-MODAL BROWSING

CROSS-REFERENCE TO RELATED CASES

This application claims the benefit of U.S. Provisional
Application No. 60/357,924, entitled “A Technique for Syn-
chronizing Visual and Voice Browsers to Enable Multi-
Modal Browsing,” filed on Feb. 18, 2002.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

The present invention relates generally to the field of
computer-based communications, and, more particularly, a
system and method for interacting with content through the
concurrent use of visual and voice browsers.

BACKGROUND OF THE INVENTION

Typical interaction with content, such as web content,
takes place in only one browser at a time. For example, a
user may interact with a web site by downloading an
Hypertext Markup Language (HTML) page and using a
visual browser to interact with the content represented by the
page (i.e., “visual/tactile” mode), or may request the same
content in the form of a Voice eXtensible Markup Language
(VXML) page, and may use a voice browser to interact with
that content (i.e., “voice” or “audio” mode). The disadvan-
tage of this arrangement is that the user can generally
interact with the content in only one mode at a time. For
example, if the user downloads the HTML version of a
portal site’s home page, the user cannot then speak the word
“mail” to be taken to the portal’s mail service. The user must
select a link to the mail service using a mouse, stylus,
keyboard, etc.

It would be advantageous if a user could use both brows-
ers to interact with content simultaneously—e.g., if the user
could say the word “mail” to be taken to the mail service,
and then enter the user’s ID and password using a keyboard.
Moreover, it would be further advantageous if such a system
could be implemented using existing browsers and markup
languages, or only minor extensions thereto.

In view of the foregoing, there is a need for a system that
overcomes the drawbacks of the prior art.

SUMMARY OF THE INVENTION

The present invention provides a technique for enabling a
multi-modal browser by synchronizing visual and voice
browsers. The present invention has the advantage that it can
be implemented using existing browser technology with
only minor modifications. Moreover, content can be adapted
to work with the present invention by the mere inclusion of
certain types of tags, which allow a properly-configured
browser to work with the multi-modal features of the

10

20

30

60

65

2

content, while not interfering with the operation of a con-
ventional browser that is not “multi-modal aware.”

In accordance with the invention, content is provided in
two markup languages. Hypertext Markup Language
(HTML) and Voice eXtensible Markup Language (VXML)
are exemplary of markup languages that facilitate two
modes of communication, although these examples are not
intended to be exhaustive. The HTML content contains a
special tag that identifies the VXML page that corresponds
to the HTML content. For example, an HTML page called
“http://www.foo.com/foo.html” may contain a tag that iden-
tifies as its corresponding VXML page. The VXML page
may “http://www.foo.com/foo.vxml” (all hyperlinks in this
application are not intended to be active hyperlinks) as its
corresponding VXML page. The VXML page may likewise
reference back to a corresponding HTML page. Addition-
ally, each page contains: (1) information and/or instructions
that are to be communicated to the corresponding page’s
browser (e.g., the HTML page contains information and/or
instructions to be communicated to the voice browser that
renders VXML content, and vice versa); and (2) signals that
cause this information to be communicated. Thus, the
HTML browser can inform the VXML browser what types
of interaction has taken place in visual/tactile mode, so that
the VXML browser can be synchronized to an appropriate
point on the VXML page. The reverse is also true: the
VXML browser can inform the HTML browser about events
that have taken place in voice or audio mode.

In a preferred embodiment of the invention, an HTML
viewer reads and parses the HTML content as it is encoun-
tered, and this HTML viewer upon the triggering of relative
links within the HTML content exports a “navigate” event
that is trapped. Relative links having a certain format signal
to the multi-modal manager that information is to be com-
municated to the VXML browser. Similarly, the VXML
browser is adapted to run on a computer that has been
configured to recognize a “hit” on a certain.port as a signal
that information should be sent from the VXML browser to
the HTML browser via the multi-modal manager. Thus, the
use of a multi-modal manager, and the adaptation of a
computer to respond appropriately to a “hit” on a certain
port, allows the HTML and VXML browsers to send mes-
sages to each other on demand.

Other features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description, is better understood when read in conjunction
with the appended drawings. For the purpose of illustrating
the invention, like references numerals represent similar
parts throughout the several views of the drawings, it being
understood, however, that the invention is not limited to the
specific methods and instrumentalities disclosed. In the
drawings:

FIG. 1 is a block diagram of an exemplary architecture in
which aspects of the invention may be implemented;

FIG. 2 is a diagram of exemplary visual markup content
that has been adapted for multi-modal use;

FIG. 3 is a diagram of exemplary audio markup content
that has been adapted for multi-modal use;

FIG. 4 is a block diagram of an exemplary browser that
has been adapted for multi-modal use;

FIG. 5 is a block diagram of a first exemplary architecture
according to aspects of the invention;

FIG. 6 is a block diagram of a second exemplary archi-
tecture according to aspects of the invention; and

US 7,210,098 B2

3

FIG. 7 is a block diagram of a third exemplary architec-
ture according to aspects of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a technique for interacting
with interacting with information content in visual and voice
modes. Voice mode may comprise “audio” or “voice inter-
action (where the user hears content with a speaker and
inputs content by speaking into a microphone), and “visual”
mode may comprise “visual/tactile” interaction (where the
user sees content on the screen and inputs content by using
a tactile device such as a stylus, keyboard, mouse, etc.).

Exemplary Architecture for Multi-Modal Content Interac-
tion

FIG. 1 shows an exemplary architecture 100 for interact-
ing with content in a multi-modal fashion. Architecture 100
comprises a computer device 102. Computer device 102
may be any type of device that possesses some computing
capability—e.g., a handheld computer, a desktop computer,
a wireless telephone, a wired telephone, etc. Computing
device 102 has various types of input/output (I/O) devices
(not shown); the following is a non-exhaustive list of
exemplary /O devices that may be present on computing
device 102: a Liquid Crystal Display (LCD); a keypad
and/or keyboard; a stylus-operated touch screen; a micro-
phone. These I/O devices may be characterized according to
the nature of the information that they are adapted to work
with. For example, the microphone and speaker may be
characterized as audio devices; the LCD may be character-
ized as a visual device; the keyboard/keypad may be char-
acterized as a tactile input device; a stylus-operated touch
screen may be characterized as both visual and tactile
devices.

Computing device 102 executes browser 104. Browser
104 is a software application that is adapted to render
markup content, such as a web page 106 written in Hyper-
text Markup Language (HTML). In the example of FIG. 1,
web page 106 contains links 108, which may direct the user
to other pages, or to specific places within web page 106.
Browser 104 also permits allows the user to interact with
web page 106—e.g., by allowing the user to fill in forms
appearing on web page 106, follow links referenced on web
page 106, etc.

Multi-modal platform 110 is a computing device that is
communicatively coupled to computer device 102. Typi-
cally, multi-modal platform 110 is powerful computing
hardware of the type typically called a “server.” It should be
understood that “server,” in this context, is an informally
descriptive label that refers to the relative size and capabili-
ties of the hardware that embodies multi-modal platform
110, rather than to multi-modal platform 110’s role within a
particular network topology. Multi-modal platform may
fulfill the role of a server in a client/server topology, but may,
alternatively, function as a peer in a peer-to-peer topology.

Voice browser 112 and speech recognition engine 114
execute on multi-modal platform 110. Voice browser 112 is
a software application that is adapted to render markup
context, such as Voice extensible Markup Language
(VXML) content. Speech recognition engine 114 processes
raw audio data and generates tokens or messages based on
the raw data. For example, speech recognition engine 114
may receive a raw digital or analog audio signal and
determine that the signal, as a whole, should be interpreted
as the word “hello.” 1 the example of FIG. 1, voice browser

15

20

25

40

45

60

65

4

112 and speech recognition engine 114 are separate compo-
nents that communicate with each other, although in an
alternative embodiment a single component may perform
both the functions of a voice browser and a speech recog-
nition engine.

Web server 120 is a computing device that is communi-
catively connected to multi-modal platform 110 and to
computing device 102. Web server 120 stores and/or gen-
erates markup content. For example, web server 120 may be
used to service an Internet portal site that provides a search
engine, an E-mail server, weather reports, etc. Web server
120 typically contains a combination of software and stored
data, and uses both the software and stored data to generate
markup content dynamically. Alternatively, web server 120
may simply serve up static markup content that is stored on
web server 120, although it will be observed that as of the
time of this disclosure (the year 2002), web servers that
generate markup content dynamically are the norm, whereas
web servers that merely serve static content are becoming
increasingly uncommon.

Web server 120 is preferably capable of generating and/or
serving content in various markup formats. For example,
web server 120 may store and/or generate content in HTML,
and may also store and/or generate VXML content that
corresponds to the HTML content. For example, in FIG. 1
web page 106 is a portal page that allows the user to link to
“mail,” “finance,” “news,” or “weather.” This portal content
can be represented as visually-renderale HTML (as is shown
in FIG. 1), but may also be represented in audibly-render-
able VXML—e.g., by creating a VXML page that causes
voice browser 112 to speak the choices “mail,” “finance,”
etc. The nature of the correspondence between an HTML
page and a VXML page is discussed in greater detail below
in connection with FIGS. 2-3.

In the example of FIG. 1, web server 120 is shown as a
separate device from multi-modal platform 110. However,
the functionality of web server 120 and multi-modal plat-
form 110 may be performed on the same device. For
example, one may create a portable “demonstration” of
architecture 110 by installing, on a single laptop computer,
software that functions as both web server 120 and multi-
modal platform 110, and by allowing the laptop to commu-
nicate with computing device 102 through a wireless local
area network (LAN).

The following is a description of how a user may use
computing device 102 to interact multi-modally with content
served by web server 120. Initially (step 1, indicated by the
circled “1”), the user uses browser 104 to issue a “GET”
request for a web page. As is known in the art, a GET request
is one type of request that can be made according to the
HTTP protocol. In the example of FIG. 1, the user requests
the page “foo.html” from web server 120. (Assume, for the
purpose of this example, that web server 120 implements the
web site www.foo.com, whose home page is foo.html.) This
GET request may, optionally, be initiated by the mere fact
that the user has started browser 104—i.e., foo.html may be
registered as the user’s home page. It should be noted that
FIG. 1 depicts the initial request as being for the HTML page
(as opposed to a similar VXML page), although it will be
understood that the initial request could just as well be for
a VXML page.

At step 2, the web server sends the page foo.html to
computing device 102 in response to the GET request,
whereupon it is rendered by browser 104. As is known in the
art, foo.html may contain non-printing content—i.e., content
that is not meant to be rendered by browser 104, but which
causes browser 104 to take some action when this non-

US 7,210,098 B2

S

printing content is encountered. In this case, the page
foo.html contains a tag that identifies the VXML page that
corresponds to foo.html. The nature of this tag is described
below in connection with FIG. 2. In the example of FIG. 1,
the corresponding VXML page is called foo.vxml. “Corre-
sponding” in this case means that foo.vxml contains voice
content that is similar to foo.html—e.g., foo.vxml may
audibly speak the names of links that are displayed visually
in foo.html. However, there are no formal requirements as to
what constitutes such a correspondence, and the decision as
to what VXML content “corresponds” to a particular piece
of HTML content is appropriately left to the content
designer.

At step 3, computing device 102 instructs voice browser
112 to issue a request for foo.vxml, since foo.vxml is the
page that foo.html has identified as its corresponding VXML
page. FIG. 4 (below) describes a technique whereby com-
puting device 102 may be configured to instruct voice
browser 112 to take such action based on a tag contained in
foo.html. At step 4, voice browser 112 issues a GET request
to web server 120 to obtain foo.vxml. At step 5, web server
120 provides foo.vxml to voice browser 112. At step 6, voice
browser 112 renders foo.vxml. This rendering typically
comprises sending an audio signal to computing device 102,
whereupon computing device 102 plays the audio through
its speaker.

It will be observed that, in the example of FIG. 1,
computing device 102 receives visual markup content (i.e.,
foo.html) and uses browser 104 to render the markup, but
merely acts as a “dumb” speaker with respect to the audio
content that is synthesized by multi-modal platform 110.
This configuration is typical, since computing device 102
may be a small device such as a handheld computer or
wireless telephone that can perform the relatively simple
computations involved in rendering HTML but lacks suffi-
cient power to perform computationally intensive operations
such as speech synthesis. However, the exemplary configu-
ration shown in FIG. 1 is not mandatory; if computing
device 102 has sufficient processing power, then computing
device 102 may have its own voice browser and may
performs speech synthesis based on VXML content rather
than acting as a mere speaker for audio signals that have
been generated elsewhere.

Synchronization Between Voice and Visual Browsers

The invention provides a technique whereby visual
browser 104 and voice browser 112 may be “synchronized”
with respect to corresponding HTML and VXML pages. For
example, if a user has used the visual browser to navigate to
a particular HTML page, it is possible to “synchronize” the
voice browser by pointing the voice browser to the “corre-
sponding” VXML page, as described above. Furthermore, if
the user is focused on some aspect of the HTML page (e.g.,
has placed the cursor inside a particular field of a form on the
HTML page), it is possible to further synchronize the voice
browser in the sense of pointing the voice browser to a
dialog on the VXML page that corresponds to that field (e.g.,
by rendering an audio prompt for the user to enter the data
associated with the field in which the visual cursor is
located). Other types of synchronization are possible,
including, but not limited to: synchronizing field inputs
between voice and visual browsers so that a user can fill out
different fields of a single form using a combination of both
voice and visual/tactile mode (e.g., in an address form,
typing the city “New York” and speaking the zip code
“10001”); synchronizing partial field inputs so that a user
can fill out a single field using a combination of voice and

20

25

40

45

60

65

6
visual/tactile input (e.g., entering a city name by typing
“New” followed by speaking “York™), etc.

The level of detail in the synchronization can be referred
to as the “granularity”; synchronizing at the “page” level
(i.e., ensuring that corresponding HTML and VXML pages
are loaded in the visual and voice browsers, but without
regard to what the user is doing on each page) is a fairly
“coarse” granularity of synchronization; synchronizing to
the point of allowing a user to type “New” and speak “York™
in the same field represents a relatively “fine” granularity. In
the examples that follow, the granularity of synchronization
shown includes: (1) placing the visual and voice browsers on
the corresponding HTML and VXML pages; (2) placing the
visual and voice browsers at equivalent dialogues within
their corresponding pages; and (3) updating field inputs such
that if a field data is entered on one of the pages (e.g., in the
VXML page), the same data is automatically entered into the
corresponding field on the HTML page. However, it will be
understood that this level of granularity, demonstrated
below, is merely exemplary, and that similar techniques may
be used to achieve any level of granularity in the synchro-
nization, and the invention is not limited to the level of
granularity demonstrated.

As noted above, the synchronization technique of the
present invention make use of non-printing (or, in the case
of voice content, non-spoken) information embedded in
markup content. FIG. 2 shows an example of an HTML page
that has been adapted for multi-modal use through the
inclusion of such content. HTML page 200 includes, among
other things, a tag 202 that identifies the VXML page that is
equivalent to HTML page 200. In this example, the equiva-
lent VXML page is http://foo.com/foo.vxml. HTML page
200 also includes, among other things, a tag 204 that serves
two functions: First, tag 204 contains the statement
name="kirusaglobal”. This statement assigns the label
“kirusaglobal” to the particular point in the page at which the
tag appears (roughly the beginning of the page in this

example). Second, tag 204 contains the statement
href="#_kirusa_#kirusaglobal.” This statement attempts to
jump to a point in HTML page 200 labeled

“_kirusa_#kirusaglobal.” In the example of FIG. 2, there is
no such label on page 200; however, the attempt to jump to
that point can be intercepted by an HTML viewer (discussed
below), which can then use that information for synchroni-
zation. In particular, the HTML viewer can be configured to
recognize certain references (e.g., those beginning with the
string ““_kirusa_"), and can also be configured to instruct the
voice browser to jump to the label identified by whatever
follows ““_kirusa_" on whatever VXML page corresponds to
HTML page 200. Thus, in this example, the attempt to jump
to the non-existent reference “#_kirusa_#kirusaglobal” is
actually a signal to an appropriately-configured HTML
viewer (discussed below) to instruct a voice browser to jump
to the label “kirusaglobal” on a corresponding VXML page.
(It should be understood that a relative link does not have to
refer to a non-existent label in order to actuate the HTML
viewer. Any relative link causes the HTML viewer to take
action. However, when an HTML viewer attempts to jump
to a non-existent label, the result is that no movement occurs
on the page. Thus, the technique of using relative links to
non-existent labels serves to incite the HTML viewer into
action while making it appear to the user as if nothing has
happened.)

Tag 206 is another tag containing information that helps
to synchronize the voice browser to the state of the visual
browser. Tag 206 defines an input field named “login” in the
form called “signin”. Additionally, tag 206 contains the

US 7,210,098 B2

7

statement onFocus="window.navigate(‘#_kirusa_#idform”);
”, which specifies that if the user “focuses” on the field
named “login” (i.e., points the cursor to that field using the
visual browser), then the HTML viewer is instructed to
execute a jump to the label “#_kirusa_#idform” in HTML
page 200. As was the case with the label described above in
connection with tag 204, the label “#_kirusa_#idform” does
not exist in page 200, but an appropriately-configured
HTML viewer can recognize the label (based on the fact that
it begins with the string “_kirusa_"") and uses the informa-
tion contained in the label to instruct the voice browser to
jump someplace—in this case, the voice browser will be
instructed to jump to the label “idform™ on the correspond-
ing VXML page.

Thus, the tags on HTML page 200 facilitate synchroni-
zation between a visual browser and a voice browser in the
following ways: (1) tag 202 identifies the VXML page that
corresponds to HTML page 200; (2) tag 204 contains a
relative link to a non-existent label on HTML page 200 that
can be trapped by an appropriate HTML viewer and used to
instruct the voice browser to perform an action; and (3) tag
206 contains an instruction to jump to a non-existent relative
link whenever the user points the cursor at a particular field,
where, again, the non-existent link is trapped by an appro-
priate HTML viewer and used to instruct the voice browser.
It will be understood that the technique of jumping to
non-existent relative links, coupled with an appropriate
HTML viewer that uses these links as a basis for instructing
a voice browser, can be generalized to an arbitrary level of
granularity. By including additional relative links at appro-
priate places, the HTML viewer may be used to provide
more information and instructions to the voice browser,
thereby facilitating synchronization at a finer level of granu-
larity than that which is depicted.

FIG. 3 shows a VXML page 300. Page 300 is, in this
example, the page “foo.vxml” that is identified in tag 292 as
being HTML page 200’s corresponding VXML page.
VXML page 300 contains various tags 302-316 that facili-
tate multi-modal use of the content that is collectively
represented by HTML page 200 and VXML page 300.

Tag 302 identifies a particular point in VXML page 300
by the label “kirusaglobal.” It will be recalled from the
discussion of FIG. 2 that HTML page 200 may cause a voice
browser to jump to the label “kirusaglobal,” and tag 302
identifies the place on page 300 to which such a jump refers.
Similarly, tag 308 is the “idform™ label that the voice browse
will be instructed to jump to when the user focuses on the
login field in HTML page 200 (see discussion of tag 206
above).

Tags 304 and 306 collectively contain: (1) information to
be sent to a visual browser, and (2) an instruction that causes
that information to be send to the visual browser. Specifi-
cally, tag 304 contains an instruction to assign the expression
“‘signin’” to the label named “_KIRUSA_SUBMIT_
FORM_”, and tag 306 contains an instruction that, in effect,
causes the label “ KIURSA_SUBMIT FORM_” and its
assigned value to be sent to the visual browser. The tech-
nique embodied in tag 306 is as follows: tag 306 contains an
instruction to navigate to the URL http://localhost:8082. As
will be recognized by those of skill in the art, this URL refers
to port 8082 on the machine on which the request originates.
The machine that runs the voice browser (i.e., multi-modal
platform 110, shown in FIG. 1) may be configured to
recognize a “hit” on its own port 8082 as a signal to send
information to the visual browser—e.g., to send the visual
browser a Java script that is to be run on the visual browser.
Thus, tag 306 causes voice browser to

20

25

40

45

60

65

8

construct a GET request to its own URL, on port 8082,
including a list of labels (which, in this case, includes only
the label “_KIRUSA_SUBMIT_FORM_"). When the multi-
modal platform receives such a “hit” on its own port 8082,
it interprets this to mean “send the Java scripts contained in
the identified labels to the voice browser and instruct the
voice browser to execute those scripts.” Thus, tag 306 causes
the “expression” assigned to the label “_KIRUSA-
_SUBMIT _FORM_” to be sent to the visual browser and
executed by the visual browser’s script engine. In the case
of tags 304 and 306, the instruction that results from these
tags is, in essence, to point the visual browser to the “signin”
form on HTML page 200.

Tags 310-318 set up a similar synchronization scheme.
Tags 310 and 312 collectively specify that the field identified
by “document.forms|[0].login.value” on HTML page 200 is
to be set to the whatever value “fooid” receives on VXML
page 300. (Other code in VXML page 300 causes the voice
browser to render an audio prompt for this value and to set
the variable “fooid” to the input received from the user.) Tag
314 indicates that the visual browser should navigate to the
tag “kirusaglobal” on HTML page 200. Tag 316 indicates
that the visual browser should be instructed to set its focus
(i.e., point its cursor) to the password field in the “zero-ith”
form on HTML page 200 (which, in the example of FIG. 2,
is the “signin” form). Tag 318 causes multi-modal platform
to send the information and instructions created in tags 310,
312, 314, and 316 to the visual browser, using the technique
discussed above in connection with tag 306.

Configuration of the Computing Device 102 for Multi-
Modal Browsing

Computing device 102 typically comes with a browser.
For example, computing device 102 may be a PDA that
comes with a browser such as INTERNET EXPLORER.
Browsers, such as INTERNET EXPLORER, have various
components. One of these components is a Component
Object Model (COM) object called an HTML viewer. FIG.
4 depicts browser 104 as comprising, among other things, an
HTML viewer 402 and a multi-modal manager 404. It will
be understood that FIG. 4 is not an exhaustive depiction of
the components of browser 104, but shows the components
that are discussed herein.

As noted above, HTML viewer 402 is preferably a COM
object that can interface with other objects. HTML viewer
parses HTML content, moves around an HTML page based
on what is encountered, and calls upon another object to
perform actions when certain HTML control structures are
encountered. For example, if a relative link is encountered
within an HTML document, HTML viewer 402 moves to the
place identified by the relative link (or, more precisely,
attempts to move to such a place; no movement within the
page will take place if the referenced relative link does not
exist). Additionally, HTML viewer 402 is configured to call
upon another object whenever a relative link is encountered.
A commercially-available browser typically comes with its
own object(s) that interface with HTML viewer 402 and that
behave in a standard way. However, such objects are not
adapted for multi-modal browsing.

The invention exploits the feature of HTML viewer 402
that causes an object external to HTML viewer 402 to be
invoked whenever HTML viewer 402 encounters a relative
link. The invention provides a multi-modal manager 404,
which is an object that interfaces with HTML viewer 402.
Multi-modal manager 404 stands in place of the standard
object that is provided with a commercially-available
browser to interface with HTML viewer 402. In particular,

US 7,210,098 B2

9

multi-modal manager 404 is designed to process relative
link events by doing the following: (1) parsing the label to
which HTML viewer 402 is attempting to jump to identify
those labels that have special meaning (in the above
example, such labels were identified because they being
with “_kirusa_"); (2) using the information contained in the
label to instruct the voice browser to take some action. In the
example above, whatever follows “_kirusa_” in a relative
link is interpreted as an actual label that appears on a VXML
page, and multi-modal manager instructs the voice browser
to jump to that label on the VXML page. As discussed
above, an HTML viewer can be adapted to use relative links
to send instructions to a voice browser. The use of multi-
modal manager 404, having the functionality described
above, to interface with the HTML viewer 402 COM object
provides this adaptation, by allowing a relative link within
an HTML document to have the effect of signaling that some
information must be sent to a voice browser.

It is noted that the foregoing examples have been pro-
vided merely for the purpose of explanation and are in no
way to be construed as limiting of the present invention.
While the invention has been described with reference to
various embodiments, it is understood that the words which
have been used herein are words of description and illus-
tration, rather than words of limitations. Further, although
the invention has been described herein with reference to
particular means, materials and embodiments, the invention
is not intended to be limited to the particulars disclosed
herein; rather, the invention extends to all functionally
equivalent structures, methods and uses. Those skilled in the
art, having the benefit of the teachings of this specification,
may effect numerous modifications thereto and changes may
be made without departing from the scope and spirit of the
invention in its aspects.

Appendix
The material in the appendix, and the accompanying
FIGS. 5-7, are Copyright 2001, Kirusa, Inc.

1. Functionality

The functionality of the system may be classified under
the following heads: (1) multimodal features, (2) ease-of-
use, and (3) application authoring. Some of this functionality
is determined by the capabilities of the Visual Browser—the
HTML Control module of an iPaq running PocketPC 2002;
and by the capabilities of the Voice Browser—Speechworks’
modified Open Speech Browser. Though both these entities
have limitations, they have been chosen because they are
still the least limiting as compared to the other choices that
were available to us. We begin by describing their respective
capabilities.

1.1. Capabilities of the Visual Browser

The client handheld is an iPaq running Pocket PC 2002/
WinCE 3.x. It comes with an HTML Control module which
can be used to build other HTML-browser based applica-
tions. This module is used by the Pocket Internet Explorer
(PIE) that comes packaged with the handheld. We built the
client-side of the prototype using the HTML Control module
as this allows one to have a ready-made HTML viewer on
the iPaq, with publicly available interfaces that are suffi-
ciently rich so as to provide access to the major functions
and APIs that are needed. The reason we use the HTML
Control is because it gives us well-test commercial func-
tionality, and saves us significant time and effort.

The publicly available interfaces to the HTML Control
module provide access to major DOM events such as the
activation of a hyperlink anchor, activating the submit

10

15

20

25

30

35

40

45

50

55

60

65

10

button in an HTML form, and parsing events when a META
tag is encountered in the HTML content. Other DOM events
corresponding to various elements present in an HTML
document cannot be accessed programmatically.

The DOM may however be manipulated by calling a
procedure of the HTML Control module which effectively
allows one to append a javascript command to the body of
the document without needing the document to be reloaded.
This, I turn, causes the module to update the DOM state, and
as a result the visually rendered document. One may, for
example, set the value of the field “editbox” of the first form
in a document to, say, “Gladiator” by assigning the property
value of the object document.forms[0].editbox to Gladiator.
The javascript command that would be appended to update
the value of the field editbox would thus look something like
this:

<javascript>document.forms[0]

.editbox.value="Gladiator”</javascript>

The above mechanism can thus be used to update the
document state in the Visual Browser may be updated by an
external entity, such as an external speech recognizer;
despite the fact that programmatic access to the document
state may be limited to external entities. The new 4.x WinCE
OS release due in 2002, codenamed “Talisker,” will provide
much better access to the document state by allowing all the
DOM events to be directly accessible.

1.2. Capabilities of the Voice Browser

The Voice Browser we use is a modified Open Speech
Browser (OSB) from Speechworks. It is a standard
VoiceXML 1.0 compliant Voice Browser, with an interface
for packet voice, as well as the ability to pre-empt an
ongoing session being executed by the OSB by initiating a
“voice push.” We use the term voice push to mean the ability
of an entity external to the Voice Browser to submit the URL
of'a VoiceXML document to a specific port of the (modified)
Voice Browser that would cause it to instantly fetch the new
VoiceXML document and load it—thereby stopping execu-
tion and losing the context of the ongoing session. In the
special case where the new URL is simply a relative anchor
within the existing VoiceXML document, the push would
simply result in the OSB jumping to that point in the exiting
VoiceXML document.

Since we do not have access to any DOM events of such
a Voice Browser we are even more limited than the Visual
Browser in terms of what we can access or manipulate.
Indeed recognition events may be trapped only in cases
where the recognition results in a new VoiceXML page that
is fetched by the Voice Browser via an HTTP request. Later
in this document we will see how this asymmetry between
the raw voice and visual browser abilities led to specific
multimodal features and design choices.

1.3. Multimodal Features

The prototype implements hybrid multimodality which
allows a user to simultaneously use the voice and visual
channels/modes/interfaces to interact with the application.
We use the term hybrid multimodality to depict this. Hybrid
multimodality itself comes in several flavors, And the par-
ticular flavor used here is best described through the fol-
lowing set of features:

1. Support for seamless movement between (Hybrid)
Multi-mode, Visual-only-mode, and Voice-only-mode by
the user, provided the application supports it.

The content sent out by the application is always assumed
to contain visual markup (HTML) with a META tag speci-
fying a handle to VoiceXML content that is used to accom-
pany the visual markup when the user has selected multi-

US 7,210,098 B2

11

mode (default), and another META tag specifying a handle
to VoiceXML content that is to be used instead of the visual
markup when the user has selected voice-only-mode.

The user may set the “mode preference” on the iPaq by
choosing “visual off/on” or “voice off/on” on a menu pro-
vided on the client. The user may select this at any time.

The HTML for Visual-only-mode is the same as the
HTML for Multi-mode. More precisely, the HTML for
Multi-mode is the same as that for Visual-only-mode. The
reason for this is that in practice we have found that the
visual display of the iPaq is rich and large enough that in
almost all situations reducing the HTML content when in
multi-mode decreases the byte-size or for that matter the
display area by only a negligible amount. This assumption
may need to be revisited at a later time.

2. Visual input elements such as form fields, submit
buttons, and hyperlinks of an HTML document in general
have VoiceXML forms that correspond to some or all of
these visual elements. These input elements can be filled/
activated using speech when in multi-mode.

Fields in an HTML form are typically filled in using
speech by clicking on an icon next to the HTML field. This
informs the system that the prompt and grammar corre-
sponding to that specific HTML field needs to be activated
in the Voice Browser. This may be accomplished in many
other ways as well. One may use a button instead of an icon
instead. Ideally, once WinCE 4 x (Talisker) is available, this
information can be trapped by simply listening for the
“onFocus” DOM event when the user clicks inside the field
itself.

The elements currently implemented and tested in the
prototype are textfields, radiobuttons, submit buttons, and
hyperlinks. One may also set other variable names embed-
ded in client-side Javascript code within the HTML docu-
ment which opens up a rich (albeit complex) set of possi-
bilities.

3. Each multimodal “page” has a notion of a (default)
global grammar which is used for activating hyperlinks and
(at most) a single submit button. This is by default active,
except when a specific HTML field is being filled in the case
above.

These elements are activation elements and (of course) it
doesn’t make sense to select them visually, and then activate
them using speech input. The single submit button restric-
tion has to do with the situation where more than one HTML
form is present in the HTML document. Note that given the
display size of iPags it is rare to see more than one HTML
form (possibly with multiple fields) in a page. One can get
around the single submit button restriction if the submit
buttons have unique text written on them (as opposed to
“Submit”). The user’s utterance can then be used to dis-
tiniguish between the various (logical) submit buttons.

4. Instead of filling an HTML field by first clicking on the
associated icon as described earlier, one may chose to unity
the grammar corresponding to that HTML field into the
global grammar.

This can be extended to all HTML fields, which would
then make for a very slick user experience, since no icon
clicks are required for filling HTML fields using speech.
However, this solution requires the application author to
take great care to avoid overloaded grammar slots. Such a
unified grammar would also result in higher recognition
errors, and this needs to be balanced with the benefit of not
having to click icons when using voice to fill HTML fields
in multi-mode.

15

20

25

60

65

12

1.4. Ease of Use

5. When the iPaq is ready to stream audio to the Speech
Browser after the push-to-talk button has been pressed, a
visual indicator appears on the screen. This provides a visual
cue to the user as to when the user may start speaking
without the fear of losing what is spoken.

The “push-to-talk” button is designed in a manner that
sometimes makes it difficult to be certain on whether the
button has been pressed or not. The visual indicator helps
ascertain the status and ensure that no speech is lost.
Currently, this is implemented by displaying a “red dot” on
the top right corner of the screen to serve as a visual cue to
the user.

6. Audio barge-in

This allows the user to barge-in both vocally as well as
visually when a prompt is being played out by the speech
browser. This is absolutely critical when the user needs to
cut short a verbose voice prompt.

1.5. Application Authoring

7. Application markup is simple to author and debug.

The prototype is designed in such a fashion that the
content sent out to the Visual Browser is regular HTML with
multimodal-specific “http-equiv’ META tags. If this content
is to be rendered by a “regular” HTML browser these META
tags will simply be ignored.

The second multimodal specific tag are the anchor tags
that are activated when clicking the icons associated with
HTML form fields. These anchors are relative anchors which
do not point to any part of the document but are trapped by
the multimodal client to enable multimodal functionality as
explained earlier. A regular browser (such as Pocket IE) will
simply ignore these relative anchors that point nowhere.
Clicking them will result in a no-op.

The VoiceXML content has a special (static) header/trailer
for enabling voice push which can be moved into an
application root document. Much of the rest is plain
VoiceXML, except for care that needs to be taken on
ensuring that variable names pointed from VoiceXML to
HTML objects and vice versa are accurate.

While not mandatory, we have used a single VoiceXML
file that corresponds to a single HTML file. If voice-only-
mode is to be supported then there are two VoiceXML files.
Currently therefore there are two, possibly three, documents
associated with each logical “multimodal page.” One may
choose to define a single physical “multimodal document”
that fuses these documents into a single master document in
an elementary fashion.

8. Existing Web applications may be multimodalized with
relative ease and minor modifications.

Starting from a pure HTML-only application, one would
need to simply add one or two META tags and additional
anchor tags for icons associated with HTML form fields
which are needed to activate local grammars specific to that
HTML field.

This multimodalization may be automatable for many
applications. One could insert tags to eth HTML as dis-
cussed earlier, and have the HTML drive the generation of
the companion VoiceXML file(s) and the in-lined gram-
mar—assuming this is feasible for the application.

2. Architecture

There are several alternate ways of implementing the
functionality we discussed in the earlier section. We have
designed the prototype so that it is logically structured in a
manner that allows substantial flexibility and extensibility
for adding additional multimodal features such as the notion
of supporting “composite input.” We begin with a high-level

US 7,210,098 B2

13

description of the architectural framework behind the design
of this prototype. FIG. 5 is a schematic of the architecture
which forms the basis for the design of the prototype

A central component of the architecture is the notion of a
Multimodal Manager (MMM) 501. The MMM, in general,
receives events from both browsers and sends back resulting
events to both browsers. These events are typically a result
of user actions (such as a stylus click or an utterance), but
may also be due to other events (such as a browser timeout).
Not all browser events (or for that matter user actions) reach
the MMM. Event Filters 502 filter events emanating from
both browsers so that only events which are relevant for
enabling multimodal functionality are sent to the multimodal
manager.

The platform manager 503 and the client manager 504
start various processes and daemons and perform various
networking and resource management functions.

The Visual browser is the HTML Control 505 and the
Voice Browser is the OSB 506. Besides the event filters 502
and the MMM 501 which we have discussed, the other items
are the HTTP Client 507 and the Recognizer 508. We will
skip the Audio components for now since their record,
playback and transport functions do not shed light on the
multimodal aspects of the system. These will be discussed
later in this document.

The HTTP Client is currently part of the HTML Control
module. However its role is such that it should functionally
be thought of as a utility of the Multimodal Manager.

The Recognizer is an HTTP daemon running on the
platform. Its sole purpose is to trap recognition events by the
OSB. Since the OSB is unable to provide direct access to
recognition events we gain access to them via HTTP hits that
are manifested as a result of a recognition event. These
HTTP hits are incident on the Recognizer by design. The
Recognizer extracts the recognized information embedded
in the HTTP request and sends it back to the MMM. The
Recognizer returns the equivalent of a logical no-op to the
OSB. This is a roundabout way of trapping a DOM-level
recognition event within the OSB.

2.1. Basic Operation
The architecture diagram of FIG. 5 shows a sample

control flow depicting the operation of the overall system

during a typical multi-mode session. The various steps are

described below:

1. A user click on a hyperlink activates an event which is
trapped by the client’s event filter

2. The corresponding URL is ferried over to the MMM
which then sends it to the HTTP Client

3. The HTTP Client sends out a GET request to the server
for the URL document.

4. The HTTP Client obtains the response and parses the
META http-equiv tags.

5. The HTTP Client sends the HTML document to the
HTML Control

6. The HTTP Client sends the META http-equiv tags to the
MMM

7. The MMM transports the (VXML) URL buried in the
META tag to the platform which submits its to the
platform’s event filter

8. The (VXML) URL is pushed to the OSB

9. The OSB sends out a GET request to the server for the
URL document.

10. The OSB obtains the VXML file and loads the document.

11. The OSB plays a prompt, prompting the user to provide
speech input

10

15

20

25

30

40

45

50

55

60

65

14

12. The user makes an utterance

13. The OSB recognizes the speech which results in a GET
request to the platform’s Recognizer. The Recognizer
traps the request and sends back a logical no-op response.

As a side effect the Recognizer submits the recognized

HTML object property and its value to the platform’s

event filter.

14. The platform’s event filter ferries the event to the MMM
15. The MMM ferries this to the HTML event filter which
then sets the HTML object property to the value.

In a situation where the user moves to voice-only-mode
the Voice Browser is immediately instructed to load the
voice-only (VXML) page by MMM as specified by the
application author in the META http-equiv tag. As a result
the visual display is also blanked out.

In a situation where the user moves to visual-only-mode,
the audio output is disabled. Since speech input is imple-
mented using push-to-talk, there is no explicit need to
disable speech input. This also supports a scenario where the
user may be willing to speak but not have the response
played out aurally. Certain public settings may suit such a
“half-duplex” voice-only-mode of operation.

2.2. Flexibility

One of the elegant aspects of the above architecture is that
the MMM and the HTTP Client utility may be moved into
the platform, thereby making the system more platform-
centric. This would be aligned with Kirusa’s strategic posi-
tion of depending and deploying as little as possible on the
client. The one drawback, though not overwhelming, in
moving MMM to the platform is the additional delay
involved since more of the work is being done remote to the
user.

An intriguing possibility is to allow the flexibility of
where the MMM functionality is resident—which may be
determined at “run time.” That is, we can envision a plat-
form that has the capability of adaptively deactivating the
MMM in the platform if the MMM functionality already
exists in the client. This decision may be made either
statically during client registration, or at run-time if the
client’s MMM capability can be expressed within HTTP
request headers at the beginning of the multi-mode session.

2.3. Extensibility
The architecture also supports the following extensions:

1. Event filters can be used to vary the synchronization
granularity or degree of modal coupling, as well as traffic
on the air-link. This can be varied adaptively based on
bandwidth availability etc.

2. The MMM can implement arbitrarily complex rules in the
future. This would be valuable when implementing “com-
posite input” as well as fancier state machines that could
potentially adapt their behavior based on past observa-
tions of delays and/or errors.

3. The MMM may also allow sophisticated conflict resolu-
tion policies at a system-level. Further, these may be
altered based on a variety of factors including round-trip
delays and user behavior.

3. Multimodal Synchronization

Multimodal synchronization is accomplished by the mul-
timodal manager 603 manipulating the state of the voice and
visual browsers 601 and 602 based on voice or visual
activity that it learns of from the respective browsers. FIG.
6 illustrates the abstract relationship between these various
entities.

In general, one may choose to apply filters to events being
submitted to the multimodal manager which ensures that

US 7,210,098 B2

15

energy and wireless link bandwidth is not wasted on unnec-
essary events. It also determines the desired level of “cou-
pling” between the two browsers. Often, a more loosely
coupled system may provide higher end-user satisfaction.

In our current prototype the problem in some sense is the
reverse; we risk having access to too few events rather than
too many! Indeed, both the visual browser (HTML Control)
and the voice browser (OSB) do not provide us access to
general DOM events. We have therefore chosen to generate
these events by trapping HTTP hits that correspond to voice
and visual activity. Since only those events that result in
HTTP hits may be operated on by the multimodal manager,
the functionality is limited as well.

This apparently awkward approach can still lead to inter-
esting multimodal functionality. FIG. 7 shows the types of
events that occur.

The visual browser 701 sends information about the
HTML object currently in focus to the MMM 703. Since we
do not have access to the “onFocus” event we substitute this
by placing an icon which needs to be clicked to simulate the
onFocus event. This results in the VoiceXM1 form/menu
corresponding to that HTML object being activated on the
Voice browser 702. The appropriate prompt and grammar
are then activated. If the user’s utterance results in a match
the voice browser then makes a HT'TP hit to an entity in the
platform called the “Recognizer” which sends back a
dummy/empty VoiceXML document to the Voice Browser,
and as a side-effect ships the recognition event to the MMM.
The MMM then operates on the recognition events and
decides how these may be used to update the state of the
HTML object in question. In general this involves either
filling a field in a form, submitting a form, or activating a
link.

3.1. Control Channel

In the prototype the MMM is located on the client. There
is therefore need for a control channel to ferry multimodal
events as messages across the air-link. This is accomplished
by a persistent TCP connection between the client and
platform. The TCP connection is setup by the client making
a TCP request to the platform. Messages from the MMM on
the client to the platform are a 2-tuple of the form <user-
id><url>, while messages from the platform to the client are
a 1-tuple of the form <urn> only. The <urn> sent is always
null-terminated.

3.2. Voice Push

Messages received by the platform destined for the voice
browser over the TCP control channel of the form <user-
id><url>, need to result in the pre-emptive loading of the
dialog corresponding to <urn> within the voice browser
session associated with <user-id>. This is accomplished by
sending a special UDP packet to the modified OSB which
listens on a specific UDP socket. The binary format of the
UDP packet needs to conform to the format specified by
Speechworks’ modified OSB:

w

10

15

20

30

35

45

50

55

<0x00><0x00><seq><0x4200> # 242+2+2 bytes

<0x04><0x00><x00> # 4+2+2 bytes 60
<0x04><length(<url>)+1><user-id> # 242+4 bytes
<url><0x0> # length(<url>)+1 bytes

The <seq> field provides an incremental counter to such
UDP packets sent to the OSB. This allows the OSB to catch ¢
errors that may be corrected due to disordered delivery of
UDP packets. The <user-id> field is a 4-byte string.

o

16
Since this voice push functionality is enabled by hacking
the DTMF interface, all VoiceXML files that need to enable
such functionality also need to add specific VoiceXML
content.

4. Packet Voice Channel

The Packet Audio Channel is implemented as a persistent
TCP connection between the client and the platform. Once
the channel is initialized by the client connecting to the TCP
daemon running on the platform and disclosing its <user-id>
audio packets flow bi-directionally between the client and
the platform. In addition to the audio packets, other mes-
sages that are sent on the audio channel include information
on when the push-to-talk button is pushed/released, when
the playback of the audio sent to the client begins/ends, and
also information on the sample width of the PCM audio
samples that are being sent across. The platform in turn
connects to the OSB’s TCP/IP Audio interface and relays
these packets on to the modified OSB.

The packet voice channel is currently using 8-bit or 16-bit
PCM-encoded speech. This is a bandwidth-intensive way of
communicating over most air-links. Future prototypes will
explore the use of DSR to alleviate this problem.

5. Multimodal Markup

The multimodal markup that is needed to author applica-
tions for the prototype comprises of an HTML document and
a VoiceXML document. This allows application authors to
use their existing knowledge to develop multi-modal appli-
cations. One may alternately fuse the HTML and VoiceXML
documents into a single document as well in a fairly straight-
forward fashion.

HTML Markup

1. The Visual browser uses standard HTML to display
visual contents. There are two multimodal specific tags that
are need to enable multi modality. A discussion on these
follows:

When a new HTML page is loaded, the client looks for the
following META tags in the document.
<meta http-equiv="vxml_url” content="http://somedomain-

.conm/vkmldoc.vxml”>
<meta http-equiv="voiceonly_url” content="http://somedo-

main.com/voiceonly.vxml”>

Depending on the user’s selected mode, the client sends the
appropriate VoiceXML URL to the platform which in turn
sends the URL to the speech browser. The speech browser
then loads and executes the voiceXML document corre-
sponding to the URL. The vxml_url is used when multi-
mode has been selected, while the voiceonly_url is used
when the voice-only-mode has been selected.

2. Fields in an HTML form are typically filled in using
speech by clicking on an icon next to the HITML field. This
icon has a link associated with it. This informs the system
that the prompt and grammar corresponding to that specific
HTML field needs to be activated in the Voice Browser. This
link is a multimodal-specific link that is trapped by the
client. The corresponding VXML form/menu that is associ-
ated with this HTML field is specified by what follows after
kirusa_ # in the relative link. The link
#_kirusa_#CityFormName would thus be tied to a
VoceXML form/menu whose id is CityFormName.

The source of an HTML page with these multimodal
specific tags is shown below:
<HTML>
<HEAD>
<TITLE> Kirusa Movie Shop 2 </TITLE>
<META http-equiv="vxml_url”

US 7,210,098 B2

17

content="http://kirusa.com/demo.vxml”>

<META http-equiv="voiceonly_url

content="http://kirusa.com/voiceonlydemo.vxml”>

</HEAD>

</BODY>

This is a simple Kirusa form filling application </BR>

<A FORM METHOD=GET ACTION="http://kirusa.com/
thank html”>

</
A>

City Name: <INPUT NAME="city”

value="City Name”>

HREF="%#_kirusa_#movie-form”><img

src="icon.gif’>

Movie Name:
TYPE=TEXT>

<INPUT TYPE=SUBMIT VALUE=Submit>

</FORM>

</BODY>

</HTML>

TYPE=text
<a

<INPUT NAME=“movie”

Clicking on the icon would thus cause the appropriate
relative link to be activated which the client will trap and use
to activate the appropriate VoiceXML form/menu in the
voice browser.

Note that the HTML page above can be rendered in any
visual-only off-the-shelf HTML browser without any prob-
lems. The abvove tags will simply be ignored by the browser
and the user will be able to interact with the page in a purely
visual fashion as well.

VoiceXML Markup

In this prototype the voice browser is intended to eb a
companion to the visual browser when the user is in multi-
mode. The Voice browser is thus primarily used to play out
the prompts and perform speech recognition, and thus
behaves like a slave. On recognizing a certain utterance the
Voice browser typically results one of the following actions:

Cause the client to navigate to a certain link on the current
HTML page

Cause the client to set the value of a certain field on the
currently displayed HTML form

Cause the client to submit the currently display HTML
form

The mechanism used in this prototype is that upon rec-
ognition the Speech Browser fills out the values of the
recognized variables and their names and submits them to
the platform using and HTTP GET request.

The variables to be filled out for the above mentioned
actions are as follows respectively:

1. _KIRUSA_LINK_NAVIGATE_This is set to the name of
the link to be navigate on the HTML page
2. _KIRUSA_OBJECT PROPERTY_, _KIRUSA_OB-

JECT_VALUE_These two variables contain the HTML

form object property and object value to be set respec-

tively.
3. _KIRUSA_SUBMIT_FORM_This variable is set the
name of the HTML form to be submitted

The syntax to define, set and submit the above mentioned
variables in the Voice XML document is as follows:

Defining the variables:
<var name="_KIRUSA_LINK_NAVIGATE_"/>
<var name="_KIRUSA_OBJECT_PROPERTY_"/>
<var name="“_KIRUSA_OBJECT_VALUE_"/>
<var name="_KIRUSA_SUBMIT FORM_"/>

Setting the Variables:
<assign name="_KIRUSA_LINK NAVIGATE_”

expr="‘LinkName’”/>

10

20

25

30

40

50

55

60

65

18

<assign name=“_KIRUSA_OBJECT_PROPERTY_”
expr="“‘document.forms[0].movie.value’”’/>

<assign name="_KIRUSA_OBIJECT_VALUE_”
expr="movie”/>
<assign name="_KIRUSA_SUBMIT_FORM_”

expr="‘FormName’”/>

It is very important to remember that the values of the

variables that correspond to the names of the HTML Objects

must be identical to the names in the HTML form.
Submitting the variables:

<submit next="http://localhost/”
namelist="_KIRUSA_LINK_NAVIGATE_"/>

<submit next="http://localhost/”
namelist="_KIRUSA_OBIJECT_PROPERTY___ KIRU-
SA_OBJECT_VALUE_"/>

<submit next="http://localhost/”
namelist="_KIRUSA_SUBMIT_FORM_"/>

The submission is being made to an HT'TP daemon running
on port 80 of the localhost. This is the Recognizer which
returns a dummy/empty page in response, and sends the
received request as a recognition event to the client.

The VoiceXML document may also have a special
VoiceXML form/menu named kirusaglobal. This form/menu
in the document is used to activate hyperlinks on the page or
the Submit button in a HTML form. It may also be used to
fill out HTML fields if the grammar associated with the field
has been unified with the global grammar. When the client
receives a recognition event from the platform, the MMM in
the client instructs the speech browser to immediately acti-
vate the kirusaglobal form. This allows the global form to be
active by default.

A sample VoiceXML document that fills out and submits
an HTML form corresponding to the previous examples is as
follows:
<?xml version="1.0"7>
<vxml version="1.0">
<!—HEADER START—>
<link next="#trigger”>
<dtmf>*</dtmt>
</link>
<var name="_KIRUSA_OBJECT_PROPERTY_"/>
<var name="_KIRUSA_OBJECT_VALUE_"/>
<var name="_KIRUSA_SUBMIT_FORM_"/>
<!—HEADER END—>
<form>
<block>Welcome to Yahoo Movies. Please click the speaker

icon to fill the respective field by speaking.
<goto next="#kirusaglobal”/>
</block>
</form>
<menu id="kirusaglobal”>
<prompt timeout="20000">This is kirusa global</prompt>
<choice next="#formsubmit”>Submit</choice>
<choice next="#formlink1”>Home</choice>
<choice next="#formlink2’>Google</choice>
<choice next="#formlink3”’>Websters</choice>
</menu>
<form id="“formsubmit”>
<block>
<prompt>You chose to submit the form</prompt>

<assign name="_KIRUSA_SUBMIT_FORM_”
expr="‘true’”/>

<submit next="http://localhost/”
namelist="_KIRUSA_SUBMIT_FORM_"/>

</block>
</form>

US 7,210,098 B2

19

<form id="movie-form”>

<field name="movie”>

<prompt timeout="200000">Please
name</prompt>

<option>Blade Runner</option>

<option>Star Wars</option>

<option>Philadelphia</option>

<filled>

<prompt>You chose the movie <value expr="movie”/></
prompt>

<assign name="_KIRUSA_OBJECT_PROPERTY_”
expr="‘document.forms[0].movie.value’”/>

<assign name="_KIRUSA_OBIJECT_VALUE_”
expr="movie”/>

</filled>

</field>

<block>

<submit next="http://localhost/”’
namelist="_KIRUSA_OBJECT_PROPERTY__
KIRUSA_OBIJECT_VALUE_"/>

</block>

</form>

<form id="“city-form”>

<field name="city”’>

<prompt timeout="200000">Please speak the city name</
prompt>

<option>Texas</option>

<option>Oklahoma</option>

<option>Philadelphia</option>

<filled>

<prompt>You chose the city <value expr="city”/></
prompt>

<assign name="_KIRUSA_OBJECT_PROPERTY_”
expr="‘document.forms[0]. city.value’”/>

<assign name="_KIRUSA_OBIJECT_VALUE_”
expr="city”/>

</filled>

</field>

<block>

<submit next="http://localhost/”’
namelist="_KIRUSA_OBJECT_PROPERTY__
KIRUSA_OBIJECT_VALUE_"/>

</block>

</form>

<!—TRAILER START—>

<form id=“trigger”>

<object
classid="com.speechworks.getTrigger”/>

<block>

<goto expr="trigger.URL"/>

</block>

</form>

<!—TRAILER END—>

</vxml>

speak the movie

name="trigger”

6. Platform Implementation

The platform has been developed using Cygwin Perl. The
platform is a multi-threaded program that runs several
daemons, and maintains interfaces through sockets with a
co-located modified OSB, and the remote client (iPaq). The
platform also runs the recognizer which was discussed in the
section on multimodal synchronization, and the voice push
functionality discussed earlier.

10

15

20

25

30

35

40

45

50

55

60

65

20

After initialization, the following threads execute within
the platform:

1. Thread to run the modified OSB.

2. Thread for handling TCP control channels for clients.
This, in turn, forks off bidirectional handlers for each
incoming connection (one per client). On receiving a
message, each handler typically sends it out to the OSB’s
UDP port using a specific packet-format—usually causing
a “voice push.”

3. Thread for handling TCP packet voice channel for clients.
This, in turn, forks off bidirectional handlers for each
incoming connection (one per client). All /O to/from a
handler is effectively sent to/received from the TCP Audio
interface of the OSB.

4. Thread for running the Recognizer. This is a HTTP
daemon, which listens to incoming HTTP hits from the
OSB, and returns a dummy VoiceXML document. It also
writes the recognition event to the corresponding TCP
control channel handler for that client—which transports
the message out to the appropriate client.

7. Client Implementation

The client has been developed using Microsoft Embedded
Visual C++ and uses the Pocket PC SDK. Major components
of the client implemented in this prototype are:

. Graphical User Interface (GUI)
. Client Manager (and MMM)

. Push-to-talk Button Handler

. Audio Recorder

. Audio Player

. Control Channel

. Packet Voice Channel

. Logger

. Registry Configuration Module

Graphical User Interface (GUI)

The client is a Windows dialog-based application which
uses different dialogs to interact with the user. There is a
“main” dialog that renders HTML content using The HTML
(View) Control provided with the Pocket PC SDK. The main
dialog also displays the high level menus to get to the two
other dialogs and to turn the Visual and Voice modes on/off.
The other two dialogs are used to set the user preferences
(home page, usemame etc.) and platform configuration
parameters (IP address and ports etc.) The main dialog also
displays a visual indication when the user presses the push-
o-talk button to indicate that the Kirusa Client is ready to
record speech.

Client Manager (and MMM)

The Client Manager’s original responsibility is to initial-
ize the different components of the client. However, in this
prototype, it also serves the role of Multi Modal Manager
(MMM) and the event filter. We intend to separate the multi
modal functionality in a separate module in the future. Client
Manager initializes the following components:

Html Control

Control Channels

Audio Recorder and Player
Push-to-talk Button

O 0~ R W~

As part of the initialization, the client manager also creates
the high level menus and instructs the HTML viewer to load
the home page as specified by the user.

As the MMM and event filter, the client manager also
listens for visual events arriving from the HTML control and
recoignition events arriving from the platform via the con-
trol channel. The Client Manager parses the recognition
event and takes the appropriate action which typically either

US 7,210,098 B2

21

results in the navigation to a new URL, setting the value of
a form field, or submission of an HTML form.

The client manager also does book-keeping functions and
cleans upon the shut down of the Client.

Push-to-Talk Button Handler

This handler runs as a separate thread in the Client
process. Its sole purpose is to monitor push and release of the
push-to-talk button. When it detects a button push, it notifies
the audio player to stop playing the audio. The audio player
then confirms that the audio has been stopped, and it informs
the audio recorder to start recording the user utterance.
Further, it also notifies the client manager to display the
visual indicator that the client is ready to record.

The same process is repeated in the reverse order upon
detection of the release of the push-to-talk button.

Audio Recorder

Upon detection of the push-to-talk button push, it pre-
pares the memory buffers to record the user utterances from
the wave input device of the IPAQ. As the buffers are filled
with the recorded data, the audio recorder starts streaming
the audio data to the platform via the packet voice channel.
It also adds appropriate protocol messages as headers to the
audio data packets.

As soon as the audio recorder is notified by the Push-to-
talk handler that the record button has been released by the
user, it stops the recording and streaming of the data. It then
closes the handles to the Wave Input device.

Audio Player

The audio player assumes the responsibility of playing
back the audio data streaming from the platform to the
client. It does so by opening a wave out device on the IPAQ
and decodes the audio data messages streaming from the
server.

When the user chooses visual-only-mode or when the
recording is in progress, the audio player is responsible for
reading the streamed audio data from the voice channel and
discarding it appropriately.

Control Channel

The control channel is implemented as a persistent TCP/
IP link that is established between the client and the platform
at the time of initialization. This link is used to send and
receive the control messages to and from the platform. For
example, it sends out the URLs or to be loaded by the speech
browser and receives the recognition events from the plat-
form, which are used to either (1) set the HTML field values
(2) submit the form or (3) to navigate to a URL.

Packet Voice Channel

The Voice channel is a persistent TCP/IP links that is
established with the Kirusa platform. Its only role is to
stream the Audio data to and from the platform as per
Speechworks’ protocol.

Logger

The logger module is implemented as a singleton and has
a global scope. It can be used by any of the other modules
of'the client to log activities to a log file. The logger module
instantiates the log file, time stamps the information and
keep tracks of a pre-defined number of user sessions. For
example, in this prototype, it keeps the log files for last five
user sessions.

Registry Configuration Module

The Registry Configuration Module is also implemented
as a singleton and also has a global scope. It can be used by
any of the other modules of the client software to retrieve or
set the information in the device’s registry. For example, the
user preferences and platform configuration information are
stored in the registry.

5

10

20

25

30

35

40

50

55

60

65

22

What is claimed:

1. A method of synchronizing a first browser and a second
browser for a user wherein said first browser further com-
prises a multimodal manager, comprising the steps of:

providing tags on a first content within a page of the first
browser, wherein said tags perform the functions of,
identifying a corresponding content within a page of

the second browser that corresponds to the first
content within the page of the first browser,
containing a relative link to a non-existent label on the
first content within the page of the first browser; and
providing an instruction to jump to a non-existent
relative link while the user browses the first content
within the page of the first browser;

receiving a request from said user, said request created by
a user instruction to process the tags on the first content
within the page, wherein said processing enables mul-
timodal synchronization;

applying a component object model object for,
parsing content in the first content within the page of

the first browser and arriving at a position within the

first content within the page that is determined by

said request received from said user;

moving to the position of said non-existent label or

non-existent relative link within the first content

within the page, based on information contained in a

tag at said arrived position; and

invoking said multimodal manager to perform actions

when the tag at said arrived position is encountered

that points to the non-existing label or non-existent

relative link, said actions of the multimodal manager

further comprising;

parsing a label within said encountered tag to which
the component object model object is attempting
to jump to; and

using information contained in said label for sending
information to the second browser indicative of
the first browser’s, and instructing the second
browser to jump to a label on the corresponding
content whereby the first browser and the second
browser are synchronized.

2. The method of claim 1, wherein said first browser
comprises a visual browser, and wherein said second
browser comprises a voice browser.

3. The method of claim 1, wherein said first content within
the page comprises an Hypertext Markup Language page.

4. The method of claim 1, wherein the information
indicative of the first browser’s state comprises a represen-
tation of a position at which a user is browsing in said first
content item.

5. The method of claim 1, wherein said first content
comprises an identifier of a second content that corresponds
to said first content, said second content item being render-
able on said second browser.

6. A computer-readable medium encoded with computer-
executable instructions to perform the method of claim 1.

7. A system for communication, comprising:

a computing device comprising a first browser;

a multimodal platform comprising a second browser;

a server in communication with said multimodal platform
and said computing device, wherein said server pro-
vides content to said first browser and said second
browser;

wherein said content within a page of the first browser
comprises tags, wherein said tags:

US 7,210,098 B2

23

identify a corresponding content within a page of the
second browser that corresponds to the first content
within the page of the first browser;
contain a relative link to a non-existent label on the first
content within the page of the first browser; and
provide an instruction to jump to a non-existent relative
link while the user browses the first content within
the page of the first browser;
said first browser further comprising:
a multimodal manager;
a component object model object, wherein said com-
ponent object model object:
parses the content in the first content within the page
of the first browser and arriving at a position
within the first content within the page that is
determined by a request received from a user;
moves to the position of said non-existent label or
non-existent relative link within the first content
within the page, based on infonnation contained in
a tag at said arrived position; and
invokes said multimodal manager to perform actions
when the tag at said arrived position is encoun-
tered that points to the non-existent label or non-
existent relative link, said actions of the multimo-
dal manager further comprising;

10

15

20

24

parsing a label to said encountered tag to which
the component object model object is attempt-
ing to jump to; and
using the information contained in the label for
sending information to the second browser indica-
tive of the first browser’s state, and instructing the
second browser to jump to a label on the corre-
sponding content whereby the first browser and
the second browser are synchronized.

8. The system for synchronizing of claim 7, wherein said
information indicative of said state of said first browser
comprises information indicative of a position within said
first content at which a user of said first browser is navigat-
ing.

9. The system of claim 7, wherein the control object
model object is a hyper text mark-up language viewer.

10. The system of claim 7, further comprising event filters
in the first and second browsers that only permit transmis-
sions of events to the multimodal manager that are relevant
for enabling multimodality functionality.

11. The system of claim 10, wherein event filters are used
to vary the synchronization granurality of modal coupling.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

