
US007984456B2

(12) United States Patent (10) Patent No.: US 7,984,456 B2
Borah (45) Date of Patent: Jul. 19, 2011

(54) INTERCEPTOR FRAMEWORK USING JAVA OTHER PUBLICATIONS
DYNAMIC PROXIES

(75) Inventor: Gautam Borah, Bangalore (IN)

(73) Assignee: Ketera Technologies Inc., Santa Clara,
CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 818 days.

(21) Appl.No.: 12/035,453

(*) Notice:

(22) Filed: Feb. 22, 2008

(65) Prior Publication Data

US 2009/0138893 A1 May 28, 2009

(30) Foreign Application Priority Data

Nov. 23, 2007 (IN) 2749/07

(51) Int. Cl.
G06F 3/00 (2006.01)

(52) US. Cl. 719/328; 719/330

(58) Field of Classi?cation Search 719/328,
719/330

See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,444,536 B1* 10/2008 Jairath 714/411

Hana K. S. Rubinsztejn, A Framework for building customized adap
tion proxies, 2002*

* cited by examiner

Primary Examiner * Lechi Truong

(74) Attorney, A gent, or Firm * Ash Tankha; Lipton,
Weinberger & Husick

(57) ABSTRACT

Disclosed herein is a method and system for isolating busi
ness logic from system operations by attaching and organiZ
ing a set of j ava interceptor components, using XML con?gu
ration and java dynamic proxy functionality, around an
existing standard software java business component. The
interceptor components are con?gured by pre-con?guring a
set of interceptor classes in an XML con?guration ?le. An
interceptor framework is provided which con?gures, initial
iZes and maintains the interceptor classes. A proxy of the
business component is created and returned to a calling client
program. The interceptor framework parses the XML con
?guration ?le for initializing all the interceptor classes. An
interceptor chain is created associated with the business com
ponent, when the client program invokes the methods on the
proxy business component. Each interceptor acts as a proxy
to a previous interceptor in the interceptor chain.

2007/0189509 A1* 8/2007 Foody et al. 380/2

2008/0270986 A1* 10/2008 Simeonov et al. 717/120 11 Claims, 8 Drawing Sheets

201 204

XML _/ j
CONFIGURATION

FILE

202

JAVA INTERCEPTOR J
FRAMEWORK

203

BUSINESS J
COMPONENT INTERCEPTOR

COMPONENTS

US. Patent Jul. 19, 2011 Sheet 1 of8 US 7,984,456 B2

ATTACHING AND ORGANIZING INTERCEPTOR
COMPONENTS AROUND A BUSINESS COMPONENT 100

/
101

CONFIGURE AN ARRANGEMENT OF j
INTERCEPTOR COMPONENTS BY

PRECONFIGURING THE INTERCEPTOR
CLASSES

i 102
PROVIDE AN INTERCEPTOR j

FRAMEWORK

l 103
CREATE AND RETURN A BUSINESS
PROXY COMPONENT TO A CALLING _]

CLIENT PROGRAM

i 104
PARSE THE XML CONFIGUARATION j

FILE

i 105
INITIALIZE THE INTERCEPTOR J

CLASSES WHEN CLIENT PROGRAM
INVOKES BUSINESS METHODS

i 106
CREATE AN INTERCEPTOR CHAIN J
ASSOCIATED WITH THE BUSINESS

COMPONENT

FIGURE 1

US. Patent Jul. 19, 2011 Sheet 2 of8 US 7,984,456 B2

201 204

XML J j
CONFIGURATION

FILE

202

JAVA INTERCEPTOR ‘/
FRAMEWORK ,

203

BUSINESS j
COMPONENT INTERCEPTOR

COMPONENTS

FIGURE 2

US. Patent Jul. 19, 2011 Sheet 3 of8 US 7,984,456 B2

‘ START }

301

CLIENT PROGRAM INVOKES
CUSTOM PROXY FACTORY TO
GET THE REFERENCE OF THE

BUSINESS COMPONENT

THE CUSTOM PROXY FACTORY INITIALIZES THE 302

BUSINESS COMPONENT AND PASSES THE J
INSTANCE TO THE PARENT BASE PROXY FACTORY

CLASS TO RETURN THE PROXY INSTANCE BY
CALLING GETINSTANCE METHOD

¢ 303
READ AND PARSE THE
XML CONFIGURATION j

DOCUMENT

COMPLETE 305
NO YES PROCESS WITH j

ERROR
MESSAGES

READ THE FACTORY 306 304

CLASS NAME AND j
LOAD THE CLASS

308
v 307 WHEN THE CLIENT j INITIALIZE 309

PROGRAM INVOKES THE FIRST J
READ AND PARSE J THE BUSINESS INTERCEPTOR

ALL THE METHOD, READ ALL ‘ AS PROXY BY
INTERCEPTOR CLASS THE CLASSES FROM ' PASSING THE
NAMES AN D LOAD IT THE MAP STORED IN BUSINESS

IN A MAP THE FACTORY COMPONENT

FIGURE 3A

US. Patent Jul. 19, 2011 Sheet 4 01s

‘ 1

US 7,984,456 B2

310

PASS THE PREVIOUS
INTERCEPTOR AS A

CONSTRUCTOR PARAMETER TO
THE CURRENT PROXY
INTERCEPTOR, SO THAT

CURRENT INTERCEPTOR ACTS
AS A PROXY FOR THE PREVIOUS
INTERCEPTOR COMPONENTS

J

%

ARE ALL THE
INTERCEPTORS
INITIALIZED NO

FIGURE 3B

312

RETURN THE
PROXY TO

I THE CLIENT
YES

US. Patent Jul. 19, 2011 Sheet 5 of8 US 7,984,456 B2

204

203

BUS INES S
COMPONENT

A

FIGURE 4

US. Patent Jul. 19, 2011 Sheet 6 of8 US 7,984,456 B2

<invocation—handler—root>
<invocation—handler—factory>

<invocation-handler—factory‘class—name>

com. ketera. invoice.service .proxy. factory.CxmlInvoiceProcessing
Factory

</invocation-handler-factory-alass—name>
<invocation-handler-list>

<invocation—handler>
<invocation-handler-class—name>

com.ketera.invoice.service.invoice.handler.InvoiceBusinessVali
dationHandler

</invocation-handler—class—name>
</invocation—handler>
<invocation—handler>

<invocation-handler—class—name>

com. ketera.invoice . service. invoice.handler.CxmlPORefValidation
Handler

</invocation-handler-class-name>
</invocation-handler>
<invocation—handler>

<invocation-handler-class—name>

com.ketera.invoice.service.invoice.handler.PoAssociationI-Iandler
</inv0cation~handler—class—name>

</invocation—handler>
</invocation-handler—list>

<invocation—handler—factory>
<invocation-handler—root>

FIGURE 5

US. Patent Jul. 19, 2011 Sheet 7 of8 US 7,984,456 B2

tryi

InvoiceProxyService proxy =

InvoiceProxyFactory. getInvoiceProxyService() ;

proxy. createlnvoice (session, invoiceCtx) ;

}catc1h(Exception e) {

log.error (e) ;

throw new InvoiceBusinessException (e. getMessage ()) ;

FIGURE 6

US. Patent Jul. 19, 2011 Sheet 8 of8 US 7,984,456 B2

public class CxmlInvoiceProcessingFactory extends BaseProxyFactory {
private :atatic bnmlean init = falzsze;
private ?tatic InvoiceProxyService proxy = null;

public static: final InvoiceProxyService
get InvoiceProxyService () thrmws InvoiceBusinessException{

if (! init) {
asaynchrenizeaci(CxmlInvoiceProcessingFactory.clasa) {

if(! init) {
InvoiceProxyService invoiceProXyService

= new InvoiceProxyServiceImpl () ;

proxy = (InvoiceProxyService)

getInstance(
invoiceProxyService,

“con1.ketera.invoice.service.nroxvafactoryCzmlInvoiceProcessin

raturn proxy;

FIGURE 7

US 7,984,456 B2
1

INTERCEPTOR FRAMEWORK USING JAVA
DYNAMIC PROXIES

BACKGROUND

This invention in general relates to proxy interceptor com
ponents and speci?cally relates to arranging java interceptor
components in a plug and play mode using extensible markup
language @(ML) con?guration and Java® dynamic proxies
over an existing j ava business component such that the under
lying business logic is separated from the system operations.

Business components are primarily Written for addressing
business functionalities. The software business components
encapsulate the business logic. These business components
are deployed in a Java server environment that provides sys
tem functionalities like transaction management, security
management, etc. For example an enterprise java bean (EJ B)
component is deployed in an application server environment
that provides the system functionalities. The business com
ponents, i.e. the E] B components encapsulating the business
logic, depend on the application server’s system functional
ities to complete business objectives. The business compo
nents depend on the application server’s transaction service
to manage its transactions and the application server’s secu
rity services to provide security. The naming service of the
application server may expose the business component, in
Which case the business component may be accessed as
remote components by external systems.

In order to avoid exposing underlying business logic or
other data layers, a business component needs to be made
independent of the server environment in Which the business
component is deployed. The system functionalities and envi
ronment functionalities need to be outside the scope of a
business component. Furthermore, it is desirable if the com
ponents that provide the system functionalities could be orga
niZed, i.e. added and/ or removed, around an existing business
component in a plug and play mode.

Existing methods employ interceptors to intercept commu
nication betWeen a client program and the business compo
nents. HoWever, the need to organiZe the interceptor compo
nents and separate the business logic from the system
functionalities is unaddressed.

In vieW of the foregoing discussion, there is an unaddressed
need for separating business logic from system functional
ities in an environment and minimiZing the dependence of
these business components on the system functionalities.

SUMMARY OF THE INVENTION

Disclosed herein is a method and system that addresses the
above mentioned needs for isolating business logic from sys
tem operations by attaching and organiZing interceptor com
ponents around a business component. The interceptor com
ponents are con?gured by pre-con?guring a set of interceptor
classes in a con?guration ?le. An interceptor framework is
provided that con?gures, initialiZes and maintains the inter
ceptor classes. A proxy of the business component is created
and returned to a calling client program. The interceptor
frameWork parses the con?guration ?le for initialiZing all the
interceptor classes. An interceptor chain associated With the
business component is created using java dynamic proxies,
based on the number of interceptors initialiZed in the inter
ceptor frameWork. Each interceptor acts as a proxy to a pre
vious interceptor in the interceptor chain.

The interceptor frameWork enables the organization of
dynamic proxy interceptors over a business component that is
deployed in a java virtual machine (J VM) or any other virtual

20

25

30

35

40

45

50

55

60

65

2
machine that supports generation of dynamic proxies. The
interceptor classes are con?gured in a prede?ned ?le that is
sent as an input to the frameWork. The frameWork reads the
prede?ned ?le and initialiZes all the interceptor classes and
creates an interception chain around the business component.
The technique of creating an interception chain Without
modifying the business component is the highlight of the
invention. The approach is to isolate the common system
functionalities from the business functionalities.

Java® dynamic proxies provide a means to create Wrapper
classes on the ?y, Wherein the Wrapper classes act as inter
ceptors over a business component. The proxy Wrappers iso
late the business logic from the system operations they per
form such as maintaining transaction integrity,
authentication, performance matrix calculation, etc.
The interceptor components are arranged and may be con

?gured to operate in a plug and play mode. Depending on the
system requirements, an interceptor component, providing
the desired system functionality may be added on or removed
from an existing business component. The order of the inter
ception, in a list of interceptors, may be changed, Without
changing the business component. A client program need not
be aWare of the interceptors and may directly call the interface
methods published by the business component. When the
client program executes any of the exposed methods on the
interface published by the business component, the frame
Work dynamically initialiZes the interceptors around the busi
ness components.
The interceptor frameWork is a Java® softWare frameWork.

This Java frameWork initialiZes the individual interceptor
components and creates a chain of interceptors based on the
con?guration in the con?guration ?le. Generated interceptor
components are interposed betWeen the client program and
the business component such that the client program is
unaWare of the separation of the business logic and the system
functionalities in the business component.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as Well as the folloWing detailed
description of the invention, is better understood When read in
conjunction With the appended draWings. For the purpose of
illustrating the invention, there is shoWn in the draWings
exemplary constructions of the invention; hoWever, the inven
tion is not limited to the speci?c methods and instrumentali
ties disclosed.

FIG. 1 illustrates a method of isolating business logic from
system operations.

FIG. 2 illustrates the different components involved in the
interceptor frameWork.

FIG. 3A illustrates a process ?oW-chart describing the
processes involved in initialiZing the interceptor components.

FIG. 3B illustrates a process ?oW-chart describing the pro
cesses involved in initialiZing the interceptor components.

FIG. 4 exemplarily illustrates proxy interceptors attached
to a business component.

FIG. 5 illustrates an exemplary application programming
interface (API) to con?gure the interceptor classes in the
frameWork.

FIG. 6 illustrates an exemplary API to derive proxy refer
ence to the business component.

FIG. 7 illustrates an exemplary API for initialiZing a busi
ness component from a factory.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates a method of isolating business logic from
system operations. The step of isolating business logic from

US 7,984,456 B2
3

system operations comprises the step of attaching and orga
niZing 100 interceptor components 204 around a business
component 203. The arrangement of interceptor components
204 are con?gured 101 by pre-con?guring a set of interceptor
classes in an XML con?guration ?le 201. The XML con?gu
ration ?le 201 may be one of extensible markup language
(XML) ?le, a standard generaliZed markup language ?le, and
an extensible hypertext markup language ?le. For the purpose
of illustration an XML con?guration ?le 201 is considered
herein. An interceptor framework 202 is provided 102 to
con?gure, initialiZe, and maintain the interceptor classes.
When a client program calls a business component, the inter
ceptor framework 202 parses 104 the XML con?guration ?le
201 for initialiZing 105 the interceptor classes and creates a
chain of interceptors. The chain is attached to the business
component and a proxy of the business component is created
and returned 103 to the client program. The interceptor com
ponents are created as instances of the interceptor classes
during the initialiZation of these interceptor classes.
An interceptor chain associated with the business compo

nent 203 is created 106 using java dynamic proxies, based on
the number of interceptor components 204 initialiZed in the
interceptor framework 202. Each interceptor component 204
acts as a proxy to a previous interceptor component in the
interceptor chain. The interceptor components 204 are inter
posed between a client program and the business component
203. The interceptor components 204 perform various system
functionalities without any dependence on the business logic
of the business component 203. The business component 203
is thus rendered independent of the system functionalities.
The system functionalities include security services, transac
tional services, remote services, Java naming and directory
interface (JNDI) services, etc. The proxy interceptors isolate
the business component 203 from the system operations such
as maintaining transaction integrity, authentication and per
formance matrix calculation, etc.

Using the interceptor framework 202 a set of java intercep
tor classes is automatically initialiZed over a business com
ponent 203 in a plug and play mode. An interceptor compo
nent 204 may be introduced, removed and/ or replaced over a
business component 203. The order of the intercept calls may
be changed by con?guring the changes in the standard XML
document referred to as the XML con?guration ?le 201. The
interceptor framework 202 may con?gure, initialiZe, and
maintain the wrapper/interceptor classes in a plug and play
environment. The client programs that access the business
components 203 are rendered unaware of the interceptors and
when the client program executes any of the exposed methods
on the interface published by the business component 203, the
framework delegates method calls to the interceptors pre
con?gured in the XML con?guration ?le 201.

FIG. 2 illustrates the different components involved in the
interceptor framework 202. The XML con?guration ?le 201
comprises precon?gured interceptor classes. The XML con
?guration ?le 201 is given as an input to the interceptor
framework 202. The interceptor framework 202 initialiZes the
interceptor classes by parsing the XML con?guration ?le
201. The interceptor components 204 are attached and orga
niZed around the business component 203 according to the
needs of any business environment, and dynamically
arranged when a client program invokes the business compo
nents 203. The interceptor framework 202 manages the life
cycle of the interceptor components 204. The interceptor
framework 202 may be deployed in a Java virtual machine or
any virtual machine that supports generation of dynamic
proxies.

20

25

30

35

40

45

50

55

60

65

4
The interceptor framework 202 has standard published

application programmer interfaces (APls) that needs to be
implemented by the intended wrapper/interceptor classes.
The behavior of the interceptor classes are described in the
abstract base class com.ketera.invoice.service.proxy.
BaseHandler.
The abstract methods in the base class that needs to be

implemented by all the interceptor classes that are used in the
interceptor framework 202, are given below:

protected abstract void prelnvoke(Object proxy, Method
method, Object[] args) throws lnvoiceBusinessException;

protected abstract void postlnvoke(Obj ect proxy, Method
method, Object[] args) throws lnvoiceBusinessException;
The interceptor framework 202 comprises a con?guration

factory that is a software component. The con?guration fac
tory is used by the interceptor framework 202 to read an XML
con?guration ?le 201 that contains the list of interceptors for
a business component 203. The con?guration factory initial
iZes each of interceptor components 204 after reading the
XML con?guration ?le 201 and creates an interceptor chain.
The responsibility of the con?guration factory also includes
attaching the interceptor chain to a business component 203.

FIGS. 3A and 3B illustrate a process ?ow-chart describing
the processes involved in initialiZing the interceptors. When a
client program is executed, based on the client program, the
requirements of a proxy interceptor are determined. The cli
ent program invokes 301 a custom proxy factory to obtain the
reference of the business component. The custom proxy fac
tory initialiZes the business component and passes 302 the
instance to the parent base proxy factory class to return the
proxy instance by calling getlnstance method. The getln
stance method declaration is provided below. According to
the requirements for a proxy interceptor, the XML con?gu
ration ?le 201 is precon?gured, and this con?gured ?le 201 is
read and parsed 303. The errors 304 that may occur are
proactively determined during the reading and parsing of the
XML con?guration ?le 201. If errors 304 occur during pars
ing or reading of the XML con?guration ?le 201, the process
is terminated 305 with appropriate error messages. The errors
304 that may occur are listed below:

1. The XML con?guration ?le 201, i.e. PROXY-FAC
TORY-CONFIGXML ?le may be corrupted. In this case the
con?guration factory would not be able to read the intercep
tors and the interceptor chain will not be created.

2. The factory class may not be available in the class path;
in that case the factory instance would not be created.

3. Individual interceptor classes may not be in the class
path; in that case, the corresponding interceptor would not be
initialiZed.

If no errors are detected, the custom factory class name is
read from the XML con?guration ?le 201 and the custom
factory class is loaded 306. All the interceptor class names in
the XML con?guration ?le are read, parsed and loaded 307 in
a map. When the client program invokes a business method,
the classes corresponding to the class names listed in the map
are read 308 from the loaded factory class. The ?rst intercep
tor component is initialiZed 309 as a proxy by passing the
constructor of the business component 203 to the base proxy
factory class. A chain of interceptor components is created,
wherein the constructor parameter of a previous interceptor
component is passed 310 to a current interceptor component.
As a result the current interceptor acts as a proxy for the
previous interceptor components 204. If all the interceptors
are initialiZed 311 by the interceptor framework 202 accord
ing to the needs based on the client program execution, the
proxy generated that is the ?nal interceptor component in the
chain is returned 312 to the client.

US 7,984,456 B2
5

The interceptor components 204 are portable and reusable.
For example ‘access control check’ could be Written as an
interceptor component 204 and the same component could be
used across different business functions. The interceptor
components 204 may be recon?gured by recon?guring the
entries of the interceptor classes in the XML con?guration
?le 201. The con?guration factory noW initialiZes the recon
?gured interceptor component 204, When a client program
executes. For example, an interceptor component may be
removed from a business component 203 Without modifying
the business component 203. The removal of the interceptor
component is determined by the PROXY-FACTORY-CON
FIG.XML ?le. If the entry of an interceptor class is removed
from the XML con?guration ?le 201, the con?guration fac
tory Would not initialiZe the corresponding interceptor.
A utility called “schema2beans” is softWare that takes

descriptions of XML ?les in document type de?nitions
(DTDs) or XML Schemas and generates java beans to auto
matically deal With the XML. Details of this utility package
are available at http://schema2beans.netbeans.org/docs.html.
The “schema2beans” utility is used by the interceptor frame
Work 202 to read the con?guration details speci?ed in the
XML con?guration ?le 201, i.e. the proxy-factory-con
?g.XML ?le. The bean classes are packaged in the package
‘com.ketera.invoice.service.proxy.con?g.beans’ in the inter
ceptor frameWork 202. The frameWork is initialiZed in the
‘com.ketera.invoice.service.proxy.BaseProxyFactory’ class.
The method ‘public static Object getInstance(Object

myobj, String factoryClassName) throWs InvoiceBusiness
Exception’ in the BaseProxyFactory class implements the
logic for initializing the Wrapper/interceptor/adapter classes.

FIG. 4 exemplarily illustrates proxy interceptor compo
nents 204 attached to a business component 203. Using the
interceptor frameWork 202, a set of java Wrapper classes or
adapters or interceptor classes could be automatically initial
iZed over a business component 203 in a plug and play mode.
For example, access control logic or system functionality
may be developed as an interceptor component 204 and the
interceptor component may be con?gured to intercept all the
calls to the underlying business component 203. The same
business component 203 When deployed in a unit testing
environment does not require the access control check func
tionality. Consequently, the access control interceptor may be
removed by removing the corresponding interceptor class
from the XML con?guration ?le 201. Thus, the technique
removes the dependency and necessity to alter the business
component 203 for different environments. Interceptor com
ponents 204 may be used With different business components
203, thereby resulting in portability and reusability of the
interceptor components 204. For example, the ‘access control
check’ system functionality may be Written as an interceptor
component 204 and used across different business functions.

Another example of a system functionality developed
using the interceptor frameWork 202 is an “invoice manage
ment system”. The invoice management system receives
invoices as commerce extensible markup language (cXML)
documents from external systems. Several validation checks
are performed on the documents before the documents are
approved by the system. These validation checks are orga
niZed as Wrapper classes/interceptors. The main business
logic is isolated from the validation checks by saving these
documents as relational entities in the database. The valida
tion Wrappers are organiZed using the interceptor frameWork
202. The proxy functionality of the interceptor components
204 is achieved by passing a constructor as a parameter, from
the previous interceptor to a subsequent interceptor.

20

25

30

35

40

45

50

55

60

65

6
FIG. 5 illustrates an exemplary API to con?gure the Wrap

per/interceptor classes in the frameWork. The frameWork
reads the list of Wrapper/interceptor/adapter classes and other
con?guration details from the xml document ‘proxy-factory
con?g.xml 201’ using the utility package “schema2beans”.
The Wrapper/interceptor/adapter classes are con?gured as
illustrated in the API of FIG. 5.
The interceptor frameWork is constituted by three main

components as follows:
1. XML Con?guration ?le 201: This xml ?le is used by the

interceptor frameWork 202 to initialiZe all the client proxy
factories and to associate the client proxy factories’ handlers.
The interceptor frameWork 202 reads from this XML con
?guration ?le 201 and initialiZes the proxy chain and associ
ates the chain With the business component.

2. Base proxy factory: The base proxy factory component
is the main component in the interceptor frameWork 202. The
base proxy factory component reads the XML con?guration
?le 201 and initialiZes the proxy chain for each of the custom
proxy factories. All custom proxy factory components extend
the base proxy factory component and inherit the base proxy
factory’s proxy handler initialiZation function.

3. Base proxy handler: This component provides the inter
face methods that are invoked When a business component is
invoked by a client. The base proxy handler has tWo exposed
methods, preInvoke that is invoked before the business
method is called; and postInvoke that is called after the busi
ness method invocation is completed.
An example of hoW a client uses the interceptor frameWork

is described as folloWs.
Step 1 : A custom factory class and a set of invocation handlers
or listeners or interceptors is de?ned in the XML con?gura
tion ?le as shoWn in the example of FIG. 5. In this example
‘invocation-handler-factory-class-name’ element holds the
custom factory class name. The fully quali?ed name of the
custom factory is com.ketera.invoice.service.proxy.
factory.RemitRecordProxyFactory.
The element ‘invocation-handler-list’ holds the list of invo

cation handlers or listeners or interceptors. The name of the
fully quali?ed class names are de?ned inside element ‘invo
cation-handler\invocation-handler-class-name’. In the
example of FIG. 5 the class names of the handlers are:
“com.ketera.invoice.service.remit.handler.record.Remit
RecordValidationHandler",
“com.ketera.invoice.service.remit.handler.record.Remit
RecordPopulationHandler”, and
“com.ketera.invoice.service.remit.handler.record.Remit
RecordEmailHandler”
The ?rst step of the interceptor frameWork 202 is to con?gure
the proxy factory class and the handler classes in the XML
con?guration ?le 201 as mentioned above.
Step 2: A custom factory component de?ned in the XML
con?guration ?le 201 is created, by extending the base proxy
factory component. In this custom factory instantiate the
business component that is going to be called by the client
program. The getInstance method de?ned in the base proxy
factory class is called to initialiZe the interceptor chain by
passing the folloWing parameters,

Business component instance: this parameter is used to
create the proxy chain and the business component is attached
at the end of the chain.

Fully quali?ed name of the custom factory class name:
This name Will be con?gured in the XML con?guration ?le
201. The base factory class Would read the invocation han
dlers con?gured for the factory and initialiZes them.
Step 3: The invocation handlers de?ned in the con?guration
xml are created. The invocation handlers need to extend the

US 7,984,456 B2
7

base handler class and implement the abstract methods
de?ned in the abstract methods
‘protected abstract void preInvoke(Object proxy, Method
method, Obj ect[] args) throWs InvoiceBusinessException’
and
‘protected abstract void postInvoke(Object proxy, Method
method, Object[] args) throWs InvoiceBusinessException’.
The preInvoke method is called before the business method of
the business component is invoked. The postInvoke method is
called after the business method of the business component is
invoked.
Step 4: The proxy factory is instantiated from the client pro
gram by invoking the getInstance method described in Step 2.
The getInstance method Would return the business compo
nent as proxy to the calling client program. When the client
invokes any method in the proxy component, the proxy del
egates calls to all the interceptors/handler before calling the
business method.

FIG. 6 illustrates an exemplary API for obtaining proxy
reference to the business component 203. The proxy instance
of the business component 203 is obtained from a base factory
class ‘com.ketera.invoice.service.proxy.BaseProxyFactory’

FIG. 7 illustrates an exemplary API for initialiZing a busi
ness component from a factory that extends from the
‘com.ketera.invoice.service.proxy.BaseProxyFactory’ class.
An external class could obtain a reference to the proxy service
as folloWs:

Hy{
InvoiceProxyService proxy =

InvoiceProxyFactory.getInvoiceProxyService();
proxy.createInvoice(session, invoiceCtx);

}catch(Exception e){
log.error(e);
throw neW InvoiceBusinessException(e.getMessage());

It Will be readily apparent that the various methods and
algorithms described herein may be implemented in a com
puter readable medium, e.g., appropriately programmed for
general purpose computers and computing devices. Typically
a processor, for e. g., one or more microprocessors Will receive
instructions from a memory or like device, and execute those
instructions, thereby performing one or more processes
de?ned by those instructions. Further, programs that imple
ment such methods and algorithms may be stored and trans
mitted using a variety of media, for e.g., computer readable
media in a number of manners. In one embodiment, hard
Wired circuitry or custom hardWare may be used in place of,
or in combination With, softWare instructions for implemen
tation of the processes of various embodiments. Thus,
embodiments are not limited to any speci?c combination of
hardWare and softWare. A “processor” means any one or more
microprocessors, Central Processing Unit (CPU) devices,
computing devices, microcontrollers, digital signal proces
sors, or like devices. The term “computer-readable medium”
refers to any medium that participates in providing data, for
example instructions that may be read by a computer, a pro
cessor or a like device. Such a medium may take many forms,
including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media include,
for example, optical or magnetic disks and other persistent
memory volatile media include Dynamic Random Access
Memory (DRAM), Which typically constitutes the main
memory. Transmission media include coaxial cables, copper

20

25

30

35

40

45

50

55

60

65

8
Wire and ?ber optics, including the Wires that comprise a
system bus coupled to the processor. Transmission media
may include or convey acoustic Waves, light Waves and elec
tromagnetic emissions, such as those generated during Radio
Frequency (RF) and Infrared (IR) data communications.
Common forms of computer-readable storage media include,
for example, a ?oppy disk, a ?exible disk, hard disk, magnetic
tape, any other magnetic medium, a Compact Disc-Read
Only Memory (CD-ROM), Digital Versatile Disc (DVD), any
other optical medium, punch cards, paper tape, any other
physical medium With patterns of holes, a Random Access
Memory (RAM), a Programmable Read Only Memory
(PROM), an Erasable Programmable Read Only Memory
(EPROM), an Electrically Erasable Programmable Read
Only Memory (EEPROM), a ?ash memory, any other
memory chip or cartridge, a carrier Wave as described here
inafter, or any other medium from Which a computer can read.
In general, the computer-readable programs may be imple
mented in any programming language. Some examples of
languages that can be used include C, C++, C#, or JAVA. The
softWare programs may be stored on or in one or more medi

ums as an object code. A computer program product compris
ing computer executable instructions embodied in a com
puter-readable medium comprises computer parsable codes
for the implementation of the processes of various embodi
ments.

The foregoing examples have been provided merely for the
purpose of explanation and are in no Way to be construed as
limiting of the present method and system disclosed herein.
While the invention has been described With reference to
various embodiments, it is understood that the Words, Which
have been used herein, are Words of description and illustra
tion, rather than Words of limitations. Further, although the
invention has been described herein With reference to particu
lar means, materials and embodiments, the invention is not
intended to be limited to the particulars disclosed herein;
rather, the invention extends to all functionally equivalent
structures, methods and uses, such as are Within the scope of
the appended claims. Those skilled in the art, having the
bene?t of the teachings of this speci?cation, may effect
numerous modi?cations thereto and changes may be made
Without departing from the scope and spirit of the invention in
its aspects.

I claim:
1. A method of isolating a business logic from system

operations, comprising the steps of:
attaching and organiZing interceptor components around a

business component, comprising the steps of:
con?guring an arrangement of said interceptor compo

nents by pre-con?guring a set of interceptor classes in
a con?guration ?le;

providing an interceptor frameWork, Wherein said inter
ceptor frameWork con?gures, initialiZes, and main
tains said interceptor classes;

creating and returning a business proxy component to a
calling client program;

parsing said con?guration ?le by the interceptor frame
Work for initialiZing the interceptor classes; and

creating an interceptor chain associated With said busi
ness component When said client program invokes
methods on said business proxy component, Wherein
each interceptor component in said interceptor chain
acts as a proxy to a previous interceptor component;

Whereby the business component implements said busi
ness logic and the interceptor components perform said
system operations separately using a server system envi
ronment; and

US 7,984,456 B2

whereby the business logic is isolated from the system
operations.

2. The method of claim 1, wherein a set of java interceptor
classes is automatically initialized over the business compo
nent using the interceptor framework, wherein said step of
initialiZation is in a plug and play mode.

3. The method of claim 1, wherein the step of proxy inter
ceptor components isolating the business logic from the sys
tem operations comprises maintaining transaction integrity,
authentication and performance matrix calculation.

4. The method of claim 1, wherein the interceptor compo
nents are interposed between the client program and the busi
ness component.

5. The method of claim 1, further comprising an abstract
base class that de?nes the behavior of the interceptor classes.

6. The method of claim 1, wherein said step of attaching the
interceptor components around the business component
allows the business component to be independent of said
server system environment.

7. The method of claim 1, wherein when the client program
executes any of the exposed methods on an interface pub
lished by the business component, the interceptor framework
delegates method calls to the interceptor classes precon?g
ured in the con?guration ?le.

8. The method of claim 7, wherein the interceptor compo
nents are dynamically generated when the client program
invokes a business method.

9. The method of claim 1, wherein a constructor from the
previous interceptor component is passed as a parameter to a
current interceptor component, whereby said current inter
ceptor component acts as a proxy for previous interceptor
component.

20

25

10
10. The method of claim 1, wherein the interceptor frame

work that organiZes the proxy interceptors is deployed in a
Java virtual machine or any virtual machine that supports
generation of dynamic proxies.

11. A computer program product comprising computer
executable instructions embodied in a computer-readable
storage medium, said computer program product including:

a ?rst computer parsable program code for attaching and
organiZing interceptor components around a business
component further comprising:

a second computer parsable program code for con?guring
said interceptor components by pre-con?guring a set of
interceptor classes in a con?guration ?le;

a third computer parsable program code of an interceptor
framework, wherein said interceptor framework con?g
ures, initialiZes, and maintains said interceptor classes;

a fourth computer parsable program code for creating and
returning a business proxy component to a calling client
program; and

a ?fth computer parsable program code for creating an
interceptor chain associated with said business compo
nent when said client program invokes methods on said
business proxy component, wherein each interceptor
component in said interceptor chain acts as a proxy to a
previous interceptor component;

whereby the business component implements said busi
ness logic and the interceptor components perform said
system operations separately using a server system envi
ronment;

and whereby the business logic is isolated from the system
operations.

