
US007792853B2

(12) United States Patent (10) Patent No.: US 7,792,853 B2
Subbian et a]. (45) Date of Patent: Sep. 7, 2010

(54) PRESENTING DATA FLOW IN LEGACY (58) Field of Classi?cation Search 707/34,
PROGRAM

(76) Inventors: Ragothaman Subbian, No. 17, Second
Floor, 100ft Ring Road, 3rd Phase, 6th
Block, BSK 3rd Stage, Kathriguppe,
Bangalore (IN) 560 085; Usha Raikar,
No. 17, Second Floor, 100ft Ring Road,
3rd Phase, 6th Block, BSK 3rd Stage,
Kathriguppe, Bangalore (IN) 560 085

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 425 days.

(21) Appl.No.: 11/698,577

(22) Filed:

(65) Prior Publication Data

US 2008/0109471 A1 May 8, 2008

Jan. 25, 2007

(30) Foreign Application Priority Data

Nov. 8, 2006 (IN) 2063/CHE/2006

(5 1) Int. Cl.
G06F 12/00 (2006.01)

(52) US. Cl. 707/762; 717/116

707/10, 2004205; 717/116; 705/1, 7
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,848,426 A 12/1998 Wang et a1.
6,609,099 B1 8/2003 Matsuzaki
6,832,229 B2 12/2004 Reed

2001/0044811 A1* 11/2001 Ballantyne et a1. 707/513

2003/0226132 A1* 12/2003 Tondreau et a1. 717/116

* cited by examiner

Primary ExamineriWilson Lee
(74) Attorney, Agent, or FirmiAsh Tankha

(57) ABSTRACT

Disclosed herein is a method for presenting data How in
legacy programs from one device to another by representing
the relation between blocks of code in the legacy program and
multiple data variables present in the program. The method
and system disclosed herein de?nes the grammar of the
legacy language and builds the relational database of the
legacy programs based on the grammar. The method de?nes
the action of a block of code Within the legacy programs by
identifying data variables and mapping the relation between
the actions and the data variables.

10 Claims, 14 Drawing Sheets

O

DEFINE THE GRAMMAR OF THE LEGACY PROGRAM

I
BUILD THE RELATIONAL DATABASE OF THE LEGACY

PROGRAM USING THE GRAMMAR

I
DEFINE USAGE TYPE OF DATA VARIABLES WITHIN THE

LEGACY PROGRAM

I
GROUP LEGACY PROGRAM INTO BLOCK OF CODES USING

THE GRAMMAR OF THE LEGACY LANGUAGE

I
MAP AND PRESENT RELATION BETWEEN THE BLOCKS OF

CODES AND THE DATA VARIABLE

US. Patent Sep. 7, 2010 Sheet 1 0f 14 US 7,792,853 B2

0

DEFINE THE GRAMMAR OF THE LEGACY PROGRAM

I
BUILD THE RELATIONAL DATABASE OF THE LEGACY

PROGRAM USING THE GRAMMAR

I
DEFINE USAGE TYPE OF DATA VARIABLES WITHIN THE

LEGACY PROGRAM

I
GROUP LEGACY PROGRAM INTO BLOCK OF CODES USING

THE GRAMMAR OF THE LEGACY LANGUAGE

I
MAP AND PRESENT RELATION BETWEEN THE BLOCKS OF

CODES AND THE DATA VARIABLE

FIGURE 1

US. Patent Sep. 7, 2010 Sheet 2 0f 14 US 7,792,853 B2

201

LANGUAGE DEFINITION TABLE

PK LANGUAGE EXTERNAL ID

LANGUAGE INTERNAL ID
PROGRAM START RULE ID
PROGRAM END RULE ID
TOKENIZATION RULE ID
LINE CONTINUATION RULE ID
COMMENT LINE RULES ID

i ,2
LANGUAGE RESERVED WORDS TABLE

PK LANGUAGE INTERNAL ID
RESERVED WORD ID

RESERVED WORD
WORD TYPE
VERB RULE ID

EXECUTION FLOW INDICATOR

FIGURE 2

US. Patent Sep. 7, 2010 Sheet 4 0f 14 US 7,792,853 B2

30]

COLUMN NAME ROW 1

PROGRAM ID 0001

138353124 PATOOOOl
FILE NAME ExAMPLEcoB

PATH ID \PATENT\SOURCE

LANGUAGE ID 01

ACTIVE Y

ADD A NEW ROW FOR EACH ADDITIONAL PROGRAM

FIGURE 4

US. Patent Sep. 7, 2010 Sheet 5 0f 14 US 7,792,853 B2

SOURCE CO DE

TION
I002 PROGRAM-ID. EXAMPLE
I

I004 INPUT-OUTPUT
[005
I SK.
1 TO
I008 DATA DIVISION.

101 FD ' . ARE ANDARD.

-R
l

05 -

I I5 RATE-OF-PAY PIC . .

FD TIME-LISTING LABEL RECORDS ARE STANDARD.
I017 OI -

I01 05
I01 EMPLOYEE-NAME-OUT PIC X
I020 XXXX.
I 1 -OUT ‘PIC .9.
I FILLER PIC XXXX.
I HOURS-WORKED-OUT
1024
I O KED-OUT
I
1027 W
1
I029 TOR
1030 RAGE SECTION.

- A .

I V .

I033 88 SOME-MORE- VALUE ‘YES‘.
I034 L-WA . .

I 5 I OVERTIME-WAG .99.
1 §

1037 ‘PROGRAM TO CALCULATE WAGES AND INDICATE # WHEN
LOYEE

1038 ‘HAS 0 THAN 8 HOURS.
I039 URE-DIVISION.
1040 IOO-MAIN LE.
1041 OPEN INPUT EMPLOYEE-DATA.
I042 .

I043 MOVE SOME-MORE-RECORDS TO EMPLO -F I -STATUS.
1044 READ EMPLOYEE-RECORD
l 5 AT END TO -FILE
ATUS.

I
I047 UNTIL ' .

1048 EMPLOYEE- DATA TIME-LISTING.

I
I
1

RA -PAY RA

Continued

FIG. 5A

US. Patent Sep. 7, 2010 Sheet 6 0f 14 US 7,792,853 B2

D TO HOURS-WORKED-OUT.
OVERTIME- T -

BY RA - AY

NORMAL-WAGES.
TIPLY VER E-WORKED BY RATE-OF-PAY GIV

E-WAGES.
MULTI L W 2 GI -WA

VERTIME-W ES - TO

IF -

l

064 AT EMPLOYEE
ATUS.

1 END ZOO-OT

FIG. 5B

US. Patent Sep. 7, 2010 Sheet 7 0114 US 7,792,853 B2

PROGRAM TOKEN LINE RESERVED USAG VARIABLE
ID 11) TOKEN NAME 11) WORD ID TEPE 1D

0001 0001 100-MA1N-MODULE 40 NULL
0001 0002 OPEN 41 10210
0001 0003 INPUT 41 10161
0001 0004 EMPLOYEE-DATA 41 20000
0001 0005 OPEN 42 10210
0001 0006 OUTPUT 42 10216
0001 0007 TIME-LISTING 42 20006
0001 0008 MOVE 43 10193
0001 0009 SOME-MORE-RECORDS 43 K 20022
0001 00010 TO 43 10325
0001 00011 EMPLOYEE-FILE-STATUS 43 K 20020
0001 00012 READ 44 10243
0001 00013 EMPLOYEE-RECORD 44 1 20001
0001 00014 AT 45 10023
0001 00015 END 45 10099
0001 00016 MOVE 45 10193
0001 00017 NO-MORE-RECORDS 45 K 20021
0001 0001:; TO 45 10325
0001 00019 EMPLOYEE-FILE-STATUS 45 R 20020

Continued -------~

0001 00020 MOVE 54 10193
0001 00021 HOURS-WORKED 54 R 20003
0001 00022 TO 54 10325
0001 00023 HOURS-WORKED-OUT 54 V 20013
0001 00024 MOVE 55 10193
0001 00025 OVERTIME-WORKED 55 R 20004
0001 00026 TO 55 10325
0001 00027 OVERTIME-WORKED-OUT 55 V 20015
0001 00028 MULTIPLY 56 10195
0001 00029 HOURS-WORKED 56 R 20003
0001 00030 BY 56 10030
0001 00031 RATE-OF-PAY 56 R 20005
0001 00032 GIVING 56 10143
0001 00033 NORMAL-WAGES 56 V 20023
0001 00034 MULTIPLY 57 10195
0001 00035 OVERTIME-WORKED 57 R 20004
0001 00036 BY 57 10030
0001 00037 RATE-OF-PAY 57 R 20005
0001 00038 GIVING 57 10143
0001 00039 OVERTlME-WAGES 57 V 20024
0001 00040 MULTIPLY 58 10195
0001 00041 OVERT1ME-WAGES 58 R 20024
0001 00042 BY 58 10030
0001 00043 2 58
0001 00044 G1V1NG 58 10143
0001 00045 OVERTIME-WAGES 58 V 20024

FIGURE 6

US. Patent Sep. 7, 2010 Sheet 8 0f 14 US 7,792,853 B2

Program ID VARIABLE lD VARIABLE NAME LINE ID hIéVEL

0001 20000 EM PLOY EE-DATA 010
0001 20001 EMPLOYEE-RECORD 01 1 01
0001 20002 EMPLOYEE-NAME 012 05
0001 20003 HOURS-WORKED 013 05
0001 20004 OVERTIME-WORKED 014 05
0001 20005 RATE-OF-PAY 015 05
0001 20006 TIME-LISTING 016
0001 20007 TIME-RECORD 017 01
0001 20008 FILLER 018 05
0001 20009 EMPLOYEE-NAME-OUT 019 05
0001 20010 FILLER 020 05
0001 2001 1 RATE-OF-PAY-OUT 021 05
0001 20012 FILLER 022 05
0001 20013 HOURS-WORKED-OUT 023 05
0001 20014 F1LLER 024 05
0001 20015 OVERTIME-WORKED- 025 05

OUT
0001 20016 FILLER 026 05
0001 20017 WAGES-OUT 027 05
0001 20018 FlLLER 028 05
0001 20019 OT-INDICATOR 029 05
0001 20020 EMPLOYEE-FILE- 031 01

V STATUS

0001 20021 NO-MORE-RECORDS 032 88
0001 20022 SOME-MORE-RECORDS 033 88
0001 20023 NORMAL-WAGES 034 01
0001 20024 OVERTIME-WAGES 035 01

FIGURE 7

FIGURE 9

US. Patent Sep. 7, 2010 Sheet 9 0f 14 US 7,792,853 B2

PROGRAM ID VARIABLE ID Line ID INIT VALUE

0001 20021 032 NO

0001 20022 033 YES

FIGURE 8

ROW INFO FOR
COLUMN NAMES ROW INFO FOR DEVICE l DEVICE 2

PROGRAM ID 0001 0001

DEVICE ID 01 02

DEVICE NAME EMPLOYEE-DATA TIME-LIST

LINE ID 006 007

US. Patent Sep. 7, 2010 Sheet 10 0f 14 US 7,792,853 B2

PROGRAM DEVICE ID FIELD LINE ID VARIABLE
ID NUMBER 1D

0001 01 0001 01 1 20001
0001 01 0002 012 20002

0001 01 0003 013 20003
0001 01 0004 014 20004
0001 01 0005 015 20005

0001 02 0001 017 20007

0001 02 0002 018 20008

0001 02 0003 019 20009

0001 02 0004 020 20010

0001 02 0005 021 2001 1

0001 02 0006 022 20012

0001 02 0007 023 20013

0001 02 0008 024 20014

0001 02 0009 025 20015

0001 02 0010 026 20016

0001 02 0011 027 20017

0001 02 0012 028 20018

0001 02 0013 029 20019

FIGURE 10

US. Patent Sep. 7, 2010 Sheet 11 0f 14 US 7,792,853 B2

LINE LINE
PROSDRAM BLOCK ID NUMBER NUMBER

FROM TO

0001 001 01039 01042
0001 002 01043 01043
0001 003 01044 01045
0001 004 01046 01047
0001 005 01048 01049
0001 006 01050 01059
0001 007 01060 01061
0001 008 01062 01062
0001 009 01063 01065

FIGURE 1 1

US. Patent Sep. 7, 2010 Sheet 12 of 14 US 7,792,853 B2

Language External ID COBOL RPG PLl
Language Internal ID 01 O2 03
Program Start rule ID 2001 2101 2201
Program End rule ID 2002 21 O2 2202
Tokenization Rule ID 2003 2103 2203
Line Continuation Rule ID 2004 2104 2204
Comment Line Rule ID 2005 2105 2205

FIGURE 12

US. Patent Sep. 7, 2010 Sheet 13 0f 14 US 7,792,853 B2

LANGUAGE RESERVED RESERVED WORD WORD VERB EXECUTION
ID WORD ID TYPE RULE ID FLOW

INDICATOR
@

001 10001 ACCEPT V 1001 S
001 10002 ACCEss K
001 10003 ADD V 1002 C
001 10004 ADVANCING K
001 10005 AFTER K
001 10006 ALL K
001 10007 ALPHABET K

~ ~ Continued ~-~----~-~

001 10063 CURRENCY K
001 10064 DATA K
001 10065 DATE S
001 10066 DATE -COMPILED I
001 10067 DATE -WRITTEN I

001 10068 DAY S
001 10069 DAY-OF-WEEK S

----~ Continued

001 10193 MOVE V 1050 C
001 10194 MULTIPLE K
001 10195 MULTIPLY V 1051 C
001 10196 NATIVE K

001 10197 NEGATIVE K
----~ Continued ~-

001 10353 > O

001 10354 < O

001 10355 >= 0

001 10356 <= 0

FIGURE 13

US 7,792,853 B2
1

PRESENTING DATA FLOW IN LEGACY
PROGRAM

BACKGROUND OF THE INVENTION

This invention in general relates to computer language
software and in particular relates to a method for presenting
data How in legacy softWare programs.

There exists a market need for a uniform method for ana
lyZing different source languages. There is a need for a
method that can group large source codes into small block of
codes and identify the nature of data present in each block and
also determine the manner of How of data betWeen the blocks
as Well as track all variables used in each block of the pro
gram.

There is a market need for a common method of analysis
for applications Written in multiple legacy languages such as
FORTRAN, COBOL, JOVIAL, NATURAL, etc., so as to
determine to all legacy constructs that Would need analysis,
replacement or substitution When the application is ported to
from one computer to another.

There is a market need for a method that indicates the
program How and its dependencies so that any user may
implement changes in the program by locating the required
sections of the program instead of tracing all the lines of code
in the program.

SUMMARY OF THE INVENTION

Disclosed herein is a method for presenting data How in
legacy programs from one device to another by representing
the relation betWeen blocks of code in the legacy program to
multiple data variables present in the program. The method
and system disclosed herein de?nes the grammar of the
legacy language and builds the relational database of the
legacy programs based on the grammar. The method de?nes
the action of a block of code Within the legacy program by
identifying data variables and mapping the relation betWeen
the blocks and the data variables.

The method and system disclosed herein makes it possible
to group program codes into blocks of codes With its depen
dencies, and identi?es the data variables used for each block;
and identi?es the nature of How of information amongst them.
Every variable can be tracked by the nature of its usage and
can be used to present the data How. The invention provides a
uniform method of analyZing different source languages and
represents the data How from one device to another, and
supports a better visual understanding of the system.
The method and system disclosed herein analyZes large

programs as many individual blocks of statements Within a
legacy program and tracks all variables used or referred in a
particular block of statements.

The method and system disclosed herein assigns different
criteria or rules for the grammar of the reserved Words of any
required legacy language. As used herein, reserve Words are
key Words in a computer language that have a de?nite mean
ing associated With them.

The method and system disclosed herein locates blocks of
code that change the value of any given variable.

The method and system disclosed herein provides a com
mon method of analysis amongst applications Written in mul
tiple legacy computer languages such as FORTRAN,
COBOL, JOVIAL, NATURAL, etc.

The method and system disclosed herein analyZes all
legacy constructs that Would need replacement or substitution
When the legacy program is ported to another computer.

20

25

30

35

40

45

50

55

60

65

2
The method and system disclosed herein provides a

method of tracing a device and indicating the block Where the
device has been used. The method shoWs the line at Which the
devices are called and enables programmers to revieW legacy
program in a time effective manner When the device contents
are revieWed and changed.
The method and system disclosed herein indicates the pro

gram How and its dependencies so that any user Who Wishes
to change the program Will only have to locate the required
sections of the program instead of tracing all the lines of code
in the program.
The method and system disclosed herein traces the vari

ables that the block depends on for executing the How of the
program. Reserved Words indicate the conditional actions
that the language uses to determine the How of the program.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as Well as the folloWing detailed
description of the embodiments, is better understood When
read in conjunction With the appended draWings. For the
purpose of illustrating the invention, there is shoWn in the
draWings exemplary constructions of the invention; hoWever,
the invention is not limited to the speci?c methods and instru
mentalities disclosed.

FIG. 1 illustrates a block diagram indicating the steps
involved in presenting data How from one device to another
by structuring legacy languages, its grammar and program
sources.

FIG. 2 illustrates the representation of a legacy language in
a relational database.

FIG. 3 illustrates the representation of programs of a legacy
application in a relational database.

FIG. 4 illustrates a data sample in a “program table”.
FIGS. 5A and 5B illustrate a data sample of a “source

table” (shoWn for COBOL language).
FIG. 6 illustrates a data sample of a “program token table”.
FIG. 7 illustrates a data sample of a “program variable

table”.
FIG. 8 illustrates a data sample of a “program init value

table”.
FIG. 9 illustrates a data sample of a “program ?le de?nition

table”
FIG. 10 illustrates a data sample of a “program ?le attribute

table”
FIG. 11 illustrates a data sample of a “program block

table”.
FIG. 12 illustrates a data sample of a “language de?nition

table”.
FIG. 13 illustrates a data sample of a “language reserved

Words table”.
FIG. 14 illustrates a representation of the relation betWeen

the blocks of code in the legacy program With devices and
usages of data variables for the sample program.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates a block diagram indicating the steps
involved in presenting data How from one device to another
by structuring legacy languages, its grammar and program
sources for programs Written in any legacy language. As used
herein, the term device is any unit that holds information
either for accepting and displaying data or for Writing or
reading from a physical storage disk. “Device” is a generic
name to represent any units and is referred to as ?les in most
of the legacy languages. The grammar of the legacy language
is represented in a language database by de?ning the folloW

US 7,792,853 B2
3

ing tWo tables: LANGUAGE DEFINITION TABLE 201 and
LANGUAGE RESERVED WORDS TABLE 202.

The method is initiated by step 101 de?ning the grammar
of the legacy program. All attributes of the grammar are
de?ned in the LANGUAGE DEFINITION TABLE 201 and
LANGUAGE RESERVED WORDS TABLE 202 for any
given legacy language. The grammar of the language de?nes
the form and interpretation of all statements in the given
legacy language. The attributes of the LANGUAGE DEFI
NITION TABLE 201 are based on the language syntax. An
Internal identi?er (ID) is allotted to represent a given legacy
language. Every statement in a legacy program is Written
based on the language de?nition. Conventional methods
demand that each statement be analyZed individually. The
disadvantage of such a conventional method is its in?exibil
ity. The method and system disclosed herein enables speci?c
rule ID to be associated With each of the reserved Word so that
any standard rule engine can be used. The rules de?ned for a
legacy program include program start, program end, token
forming rules, line de?nition rules and comment lines rules.
The set of rules enables the logic for evaluating all valid
statements and building the tokens. All the reserved Words for
a legacy language are de?ned in the LANGUAGE
RESERVED WORDS TABLE 202. For each reserved Word,
three attributes are de?ned i.e. its type, its execution How and
associated verb rules ID. Assigning rule ID for each reserved
Word permits implementing standard rules engine for updat
ing the nature of usage of the reserve Words. The LAN
GUAGE RESERVED WORDS TABLE 202 is further
described in FIG. 13.

Step 102 of the method builds the relational database for a
legacy application that comprises a set of program ?les. A
PROGRAM TABLE 301 holds the list of all programs and
indicates its legacy language and the location Where sources
are available. The actual source code is captured in the
SOURCE TABLE 302. Each line in a program is given a
unique line ID. Each program is then analyZed into three
major types; each type has its set of tables. The ?rst type is the
program tokens for all statements, the second type is the
program variables for all variables used in the program, and
the third type is the ?les and devices used in the set of pro
grams. The PROGRAM VARIABLE TABLE 303 has a child
table for initial values the variables may hold. The ?elds or
columns of all the ?les are stored in the PROGRAM FILE
ATTRIBUTE TABLE 308 as a child table of the PROGRAM
FILE DEFINITION TABLE 307. A list of programs that need
such analysis is prepared and its sources are read and parsed
to form the tokens. A token is the smallest Word that the
compiler understands for building executables. Each token is
assigned a unique token ID When created. When this token is
a reserved Word, the corresponding reserved Word ID is
updated in the PROGRAM TOKEN TABLE 305. When the
token is a neW variable, a roW is created in the PROGRAM
VARIABLES TABLE 303. For all variables used in the state
ment, the variable’s respective variable IDs are also updated
to ensure better referencing. When the token is a device, the
device attributes are Written in the PROGRAM FILE DEFI
NITION TABLE 307. All device layouts or structures are
Written in device child table, i.e. PROGRAM FILE
ATTRIBUTE TABLE 308.

Existing legacy applications are Written based on the gram
mar of the particular language. The dependence on grammar
restricts the legacy application to be revieWed only by its
programmers. In the conventional legacy applications, skills
in the grammar of the legacy applications must be acquired
for all legacy languages individually. HoWever, the method
and system disclosed herein makes it possible to implement a

5

10

20

25

30

35

40

45

50

55

60

65

4
single database that can hold all legacy language programs to
display multiple types of data tracking. The method and sys
tem disclosed herein does not depend on any internal docu
ments of the computer application and only relies on pub
lished language grammars.
The next step 103 de?nes usage type for the data variables

in the PROGRAM TOKEN TABLE 305 for all legacy pro
grams. When the token has valid reserved Word ID, the LAN
GUAGE RESERVED WORDS TABLE 202 is accessed and
its rule is executed. Reserved Word rules are setup as per the
language grammar to identify all variables in the statements
of the legacy language and the nature of usage of the vari
ables. The rule engine fetches the value of the usage type for
each of the data variables as de?ned in the grammar. The
usage type data is updated in the PROGRAM TOKEN
TABLE 305 for the variable ID. The PROGRAM TOKEN
TABLE 305 holds data characteristics of variables used in the
source statement. In case of errors, the error ?ags are setup.

Further, step 104 involves grouping of legacy program into
blocks of code using the grammar and the rules of the legacy
language. Each reserved Word has a de?nition of an execution
?oW indicator that is set at the start. Using the indicator,
programs can be grouped into a series of blocks consistent
With the language. Each block is identi?ed With the starting
and ending Line ID. The program start rule determines the
start of the program. The PROGRAM BLOCK TABLE 306 is
created for all legacy programs With each block getting its
unique ID With its reference to the source lines. Legacy pro
grams that run into thousands of lines are grouped into pro
gram blocks for easier representation by building the PRO
GRAM BLOCK TABLE 306. The technique of grouping
program codes into program blocks is further described With
pseudo code in the description of the PROGRAM BLOCK
TABLE 306.

Step 105 maps and presents, for each program and its block
of codes, the relation betWeen the blocks of code and the
nature of usage of its variables. First, the PROGRAM TABLE
301, PROGRAM FILE DEFINITION TABLE 307 and PRO
GRAM FILE ATTRIBUTES TABLES 308 are read and the
report columns are built. Then each roW is displayed by
reading all roWs of the PROGRAM BLOCK TABLE 306 for
the given program. The tokens in the source lines for the
program block are read for its usage type value. Based on the
usage type value each column is displayed With Vivalue
changed, IiData Input, etc. The display shoWs the data How
from one device to another for each block of code.

FIG. 2 illustrates the representation of a legacy language in
a relational database. The language database speci?es the
grammar of the legacy program. The language database con
sists of a LANGUAGE DEFINITION TABLE 201 and LAN
GUAGE RESERVE WORDS TABLE 202.
The ?elds in the LANGUAGE DEFINITION TABLE 201

include a language external ID, a language internal ID, pro
gram start rule ID, program end rule ID, tokeniZation rule ID,
line continuation rule ID and comment line rule ID. Language
external ID indicates hoW the legacy language is described by
the industry. For example the legacy language could be
COBOL-85 to reference the language de?ned by the ANSI
standard in the year 1985. For each external ID, a unique
language internal ID is allotted. The ID is used to link the
PROGRAM TABLE 301 in the program database. The inter
nal ID can be built either randomly, or in a predetermined
manner. The method disclosed herein provides effective secu
rity even if a user accidentally logs into the database. A neW
roW is created for each of the legacy language. Each roW holds
the folloWing additional ?elds. The program start rule ID
holds the rule ID that de?nes a method of locating the start of

US 7,792,853 B2
5

a program for a speci?c language. For example, the ?rst
statement in the procedure division is the start for COBOL
programs. In the case of the FORTRAN language, the system
Will start execution at the program statement. The program
end rule ID holds the rule ID that de?nes the method to locate
the end statement of a program for a given language. The
tokeniZation rule ID holds the rule ID that de?nes the method
of splitting the source statements into individual tokens. The
line continuation rule ID holds the rule ID that indicates hoW
to combine consecutive lines of code to form a single state
ment. The comment line rule ID holds the rule ID that indi
cates hoW to identify the comment lines Within a program. A
legacy system consists of many programs and each program
consists of ?les that contain source statements as de?ned by
the language. The above set of rules present a method to build
all tokens for any legacy language program.

The LANGUAGE RESERVED WORDS TABLE 202
comprises the folloWing ?elds: language internal ID, reserved
Word ID, reserve Word, Word type, verb rule ID, and execution
?oW indicator. Every legacy language publishes its set of
reserved Words Which are referred to as keyWords. The usage
and de?nition of keyWords are rule bound. Each reserved
Word is assigned a unique reserved Word ID. In the example,
shoWn in the FIG. 13, “ACCEPT reserved Word” is given an
ID 10001. The assigned ID can be sequential or random. The
Word type classi?es the reserve Words into ViVerb,
KiKeyWord, SiSystem function, O4Operative symbols
and IiInformative. Reserved Word With V type denotes that
they are statements to perform a step in the program. For
example, MOVE verb is for moving data from one variable to
another variable, With V as as its Word type. Reserved Word
With Kitype indicates that they are keywords to de?ne fur
ther attributes for the verb. HIGH VALUES is a reserved Word
in COBOL to denote that the value Will be the highest and is
a keyWord. A reserved Word With S Word type denotes that the
Word represents a system function. DAY-OF-WEEK is a sys
tem function to obtain the particular day of the Week and
represent a system function. A reserved Word With an O Word
type denotes that the Word represents an operative symbol.
Operative symbols are another form of key Word. “>:” is an
operative that de?nes GREATER THAN OR EQUAL TO. A
reserved Word With I Word type denotes that the Word repre
sents an information for the program. AUTHOR is a reserved
Word in COBOL to indicate the name of the person Who has
Written the program.

The execution ?oW indicator provides a method of group
ing statements into various blocks. One typical coding type is
as folloWs. When a reserved Word has ‘C’ as the execution
?oW indicator, the statement remains in the current block.
When a reserved Word has S as the execution ?oW indicator,
the statement Will initiate a neW block. When a statement has
Q as the execution ?oW indicator, the next statement Will
initiate a neW block and it implies that the current block Will
be completed With the present statement. The method dis
closed herein declares attributes to legacy statements in order
to group statements into a set of blocks, each block can be set
With differing attributes to enable in-depth analysis of the
program.

The foregoing example has been provided merely for the
purpose of explanation and is in no Way to be construed as
limiting of the present method and system disclosed herein.
For example, each block can be assigned With another
attributeia level number to indicate the dependency of the
block With its parent block. The starting level can be set to 01
to indicate all parent blocks and each dependent child block
Will be set to the next higher number, thereby enabling the
tracing the block dependencies.

20

25

30

35

40

45

50

55

60

65

6
FIG. 3 illustrates the representation of programs of a legacy

application in a relational database. The program database
shoWs the relational database of the legacy programs. The
relational database is generated from legacy source programs
using the rules in the language database. The program data
base consists of a PROGRAM TABLE 301, SOURCE
TABLE 302, PROGRAM VARIABLE TABLE 303, PRO
GRAM INIT VALUE TABLE 304, PROGRAM TOKEN
TABLE 305, PROGRAM BLOCK TABLE 306, PROGRAM
FILE DEFINITION TABLE 307 and PROGRAM FILE
ATTRIBUTE TABLE 308. All the above tables relate to each
other to represent the set of programs consistent With their
legacy language. The PROGRAM TABLE 301 holds the
information or details or summariZation of data of the legacy
program. The ?elds in the PROGRAM TABLE 301 are pro
gram ID, program number, ?le name, path ID, language ID
and active.

In the method disclosed herein, the primary table of the
program database is the PROGRAM TABLE 301. For every
program to be analyZed, one roW is allotted With a unique
program ID. The unique ID is used to validate programs if
programs having same numbers are referred again. The pro
gram ID is a common key for all other tables in the database
and so it must be unique. The ?le name is the name of the ?le
that holds the source of the program in the legacy system. The
path ID states the location of the program Within the legacy
system. The language ID is the unique ID to identify the
programming language and is used to link With the language
internal ID of the LANGUAGE DEFINITION TABLE 201.
The active ?eld is used to denote Whether this program is
active in the legacy system. The SOURCE TABLE 302 stores
the source code of the legacy program. The ?elds in the
SOURCE TABLE 302 are program ID, line ID, source code
and success indicator. The line ID starts from 1 for the ?rst
source line in each legacy program and for every source line
added, the line ID is incremented by l. The source code ?eld
contains the actual source line of the program. The success
indicator indicates the success When all tables are created
correctly. The PROGRAM TOKEN TABLE 305 holds all
tokens used in the source statements. The source statements
are the actual statements that are used in the program to
perform the functionality required in the programs. An illus
trative pseudo code representation for building the program
token table is as folloWs:

For the program required
Get all the rules for the internal ID for the given legacy program by
retrieving the roW for language internal ID of the program from
the LANGUAGE DEFINITION TABLE 201.

For each line of the sources in the SOURCE TABLE 302 for the
given program:

For each statement that con?rms Program start and end rules,
Apply tokenization rules.
For each token

Allot unique token ID for each token,
Set usage type to NULL,
Update reserved Word ID, When the token is a verb in reserved
Words table,
Update variable ID, When this variable name matches the variable
name in the PROGRAM VARIABLE TABLE 303,
Set Error Indicator to NO When there is no error
Write the token roW.

The ?elds in the PROGRAM TABLE 301 comprise pro
gram ID, token ID, token name, line ID, reserved Word ID,
usage type, variable ID and error indicator. The program ID
denotes the program in the PROGRAM TABLE 301. PRO
GRAM VARIABLE TABLE 303 holds all the variables

US 7,792,853 B2
7

de?ned in the program With its attributes. A new roW is added
to PROGRAM VARIABLE TABLE 303 Whenever a neW
variable is de?ned in a program. Each roW is assigned a
unique variable id for referencing. The ?elds in the PRO
GRAM VARIABLE TABLE 303 are program ID, variable
ID, variable name, and level number. The level number indi
cates the hierarchy of the variable. The table holds only the
variable references and its sequence, but can be extended to
include other attributes as Well. This structure facilitates a
method of holding all variables, but can be expanded to hold
a variety of attributes to help any further analysis. One skilled
in the art Will understand that the table can be enhanced With
different attributes to incorporate additional features. The
PROGRAM INIT VALUE TABLE 304 is used to hold the
start up value that is assigned to the variable. The ?elds in the
program initial value table are program ID, variable ID and
init value. The PROGRAM FILE DEFINITION TABLE 307
holds all ?les or devices used in the program. The table holds
all the devices used in a particular program and is used to
shoW the data How from one device to another. The ?elds in
the PROGRAM FILE DEFINITION TABLE 307 are pro
gram ID, device ID, device name, and line ID. A neW roW With
a unique device ID Will be added to the program ID for every
neW device. The device name holds the name of the device
and the line ID indicates the line in of the source program in
Which it is available. The PROGRAM FILE ATTRIBUTE
TABLE 308 holds all the ?elds that are de?ned in the ?le. A
neW roW Will be created for each neW ?eld for a ?le. The ?elds
in the PROGRAM FILE ATTRIBUTE TABLE 308 include
program ID, ?le ID, line ID, ?eld number, and variable ID.

The PROGRAM BLOCK TABLE 306 groups all program
statement into blocks for better representation and analysis.
The ?elds in the PROGRAM BLOCK TABLE 306 are pro
gram ID, block id, line ID from and line ID to. A neW roW is
added to the PROGRAM BLOCK TABLE 306 Whenever a
neW block is identi?ed.

FIG. 4 illustrates a data sample in a PROGRAM TABLE
301. The ?rst column contains the column names of the
PROGRAM TABLE 301. The column names are program ID,
program number, ?lename, path ID, language ID, and the
active. The second column shoWs entries in a ?le for the
example. Program ID is indicated by 0001. The next program
Will get the next number 0002. The program number is
“PAT00001”. The ?le name roW shoWs the example ?lename
EXAMPLE.COB. The path ID shoWs the path of the current
program as patent\source. The language ID is shoWn as 01
Which is the internal ID for COBOL-85 as in LANGUAGE
DEFINITION TABLE 201. The active ?eld indicates the
active status of the program, Wherein it is set to Yes if the
program is being used in the system.

FIGS. 5A and 5B illustrate a data sample of a SOURCE
TABLE 302 shoWn for COBOL language. The ?rst column
lists the program ID identifying the sources of the program.
The second column lists the line ID. The line ID is the key for
identifying each statement in a program. The line ID starts
With 1 and goes up to the maximum number of lines that the
program contains. The third column lists the source code as
present in the system. The fourth column lists the success
indicator. When a line is parsed correctly, the success indica
tor has Yes, otherWise it is set to No.

FIG. 6 illustrates a data sample of a PROGRAM TOKEN
TABLE 305. The ?rst column lists the program ID of the
program. The second column lists the token ID. For each
program, the token ID starts With one. The ?rst and the second
columns provide the unique key required to refer to any token
in a given legacy program. The third column lists the token
name. The fourth column indicates the line ID of the token in

20

25

30

35

40

45

50

55

60

65

8
the SOURCE TABLE 302. The ?fth column is the reserved
Word ID. When the token is a reserved Word and is present in
the LANGUAGE RESERVED WORDS TABLE 202 for the
given language ID, the column indicates the reserved Word
ID. The sixth column is usage type. The usage type has a
single character attribute as shoWn beloW.
KiConstant value is referred/updated
RiValues referred
IiInput data values
WiData values Written
EiEntry of user data
DiDisplay of user data
ViValue changed

The usage type of every data variable is updated With a sepa
rate process and is set for each variable. The method and
system disclosed herein assigns common usage type to all
variables used in the legacy program irrespective of the legacy
language of the program. The step of assigning common
usage type to the variables is used to indicate What the pro
gram statement performs on the variable. For example, the
source line 54 of the FIG. 6 is:

MOVE HOURS-WORKED TO HOURS-WORKED-OUT

The line has 4 tokens as identi?ed in the sample from 20-23.
Token 20 is for HOURS-WORKED. Token 22 is for HOURS
WORKED-OUT. The usage type for token 20 is R and for
token 22 is V. The token 20 has the usage type for variable
HOURS-WORKED as R implying that the variable usage is
“Values referred” The token 22 has the usage type for variable
HOURS-WORKED-OUT as V implying that the variable
usage is “Value changed”.

The seventh column is the variable ID as indicated in the
PROGRAM VARIABLE TABLE 303.

FIG. 7 illustrates a data sample of a PROGRAM VARI
ABLE TABLE 303. The ?rst column lists the program ID
identifying the program. The variable ID column lists the
unique de?nition of the variable ID. In this case, the variable
ID is set to start With 20000 and each neW de?nition gets the
next number. The third column is the variable name as de?ned
in the source program. The fourth column is the line ID Where
this variable is de?ned in the source program. The ?fth col
umn indicates the level number of the source line that de?nes
the variable. The level number is used to indicate if the vari
able has children to further de?ne the ?eld.

FIG. 8 illustrates a data sample of a PROGRAM INIT
VALUE TABLE 304. The ?rst column lists the program ID
identifying the program. The second column is the variable
ID. The third column is the Line ID Where this init value is
declared. The fourth column is the init value column that
contains the actual value declared for this program.

FIG. 9 illustrates a data sample of a PROGRAM FILE
DEFINITION TABLE 307. The ?rst roW lists the program ID
for the program. The second roW lists the device ID identify
ing the speci?c device. The device ID starts With 1 for this
program. The third roW lists the name of the device. The
fourth roW is the line ID Where the device is declared in the
source program.

FIG. 10 illustrates a data sample of a PROGRAM FILE
ATTRIBUTE TABLE 308. The ?rst column lists the program
ID for the program. The second column lists the device ID for
identifying the device. The third column is the ?eld number in
the device. The fourth column is the line ID Where the ?eld is
referred in the SOURCE TABLE 302. The ?fth column is the
variable ID relating to the PROGRAM VARIABLE TABLE
303.

US 7,792,853 B2
9

FIG. 11 illustrates a data sample of a PROGRAM BLOCK
TABLE 3 06. The ?rst column lists the program ID identifying
the program. The second column is the block ID in a program.
The method and system disclosed herein splits a large pro
gram into small blocks since all legacy programs folloW a
?xed path of execution. The ?rst block starts as 1. Every neW
block gets the next higher number. The third column line ID
indicates the starting line ID of the current block. The fourth
column line ID indicates the ending line ID of this block. A
separate process is set-up to generate the PROGRAM
BLOCK TABLE 306 from the PROGRAM TOKEN TABLE
305. The generation of the PROGRAM BLOCK TABLE 306
can be performed using a computer program. An illustrative
pseudo code representation for building the PROGRAM
BLOCK TABLE 306 is as folloWs:

Set the current block ID as 1.
Set SKIP-IND to NO
Obtain the program ID for Which PROGRAM BLOCK TABLE 306 is
to be created
For each token ID With reserved Word not NULL for the Program ID
from the PROGRAM TOKEN TABLE

If SKIP-IND = NO

Set the line ID from = Token line ID
Set the line ID to = Token line ID
Set SKIP-IND =YES

END-IF
Fetch the execution flow indicator for the given reserved Word
CASE EXECUTION FLOW INDICATOR OF
C Set the line ID to = Token line ID /* continue same block */

Get next token record and continue
S Write the current Block record

Set the line ID from = Token line ID
Set the line ID to = Token line ID
Increment block count by 1
Set SKIP-IND =YES
Get next token record and continue

Q Set the line ID to = Token line ID
line */
Write the current Block record
Increment block count by 1
Set SKIP indicator to NO
Get next token record and continue

OTHERS: SET Warning message
END.

/* NB starts With this line */

/* current block ends in this

The dependency of current block With the previous block
can be built to trace any program ?oWs. This can further be
enhanced to identify blocks of code that are dormant. All
dependent blocks can be shoWn in another level for better
presentation.

FIG. 12 illustrates data sample of a LANGUAGE DEFI
NITION TABLE 201. The ?rst roW lists the Language exter
nal ID. The example illustrates the LANGUAGE DEFINI
TION TABLE 201 for three legacy languages like COBOL,
RPG, and PLI. The second roW lists the language internal ID
The language internal ID roW starts as 01 for the ?rst language
and for each neW language it is incremented. The internal ID
is the key that is used in the program database. The third roW
is program start rule ID. The fourth roW is program end rule
ID. The ?fth roW is tokeniZation rule ID. The sixth roW is line
continuation rule ID. The seventh roW is comment line rule
ID. The program start rule ID, tokeniZation rule ID, line
continuation rule ID and comment line rule ID are required to
de?ne the rules of the legacy language.

FIG. 13 illustrates a LANGUAGE RESERVED WORDS
TABLE 202. The ?rst column lists the language internal ID
that identi?es a speci?c program. The second column lists the
reserved Word ID identifying a speci?c reserved Word. The
third column lists the reserve Words that are reserved for

20

25

30

35

40

45

50

55

60

65

10
speci?c grammatical usage in the programming language.
The fourth column lists the Word type classifying the reserve
Words into verb, keyWord, system function, operative and
informative. The ?fth column lists the verb rule ID. The sixth
column lists the execution ?oW indicator.

FIG. 14 illustrates a representation of the relation betWeen
the blocks of code in the legacy program With devices and
usages of data variables for the sample program. FIG. 14
displays an example of a data tracking chart. The ?gure shoWs
the devices used, i.e., the employee data and time listing; and
nature of usage of the device in each block of program code,
represented as block numbers in the PROGRAM BLOCK
TABLE 306. For each device, the column headings include its
?elds of data, and When the descriptive nature of the display
is required. The PROGRAM BLOCK TABLE 306 indicates
all the blocks that make up the program. Each block indicates
its starting and ending line ID. The PROGRAM TOKEN
TABLE 305 indicates all tokens in a line of code and its nature
of usage. PROGRAM FILE DEFINITION TABLE 307 indi
cates all ?elds that belong to the device. By building the
relational database illustrated in FIG. 3, data movements in
each block of code are represented in a convenient format,
exempli?ed in FIG. 14.
The representation in FIG. 14 is not meant to be restrictive

and multiple other representations are feasible. For example,
each block can be shoWn With variables Whose value it is
dependent on for execution. Each block can also be shoWn in
a hierarchical manner to shoW the precedence. It is also pos
sible to highlight only the desired ?eld names in the program
and its interaction With the program blocks. For example, the
block number 6, comprise line ID 50-59. The tokens for these
lines are read from the PROGRAM TOKEN TABLE 305. The
nature of usage indicates in this case is Rithat indicates that
the value is READ, and Vithat indicates that the value has
changed. The appropriate column is indicated as R and V by
matching the ?eld names With the token name. “I” in FIG. 14
represents input, and “W” represents Write.
An illustrative pseudo code representation for building the

data tracking status chart is as folloWs:

Obtain the program ID for Which Data tracking status chart is to be
created.
For this program ID, get the devices from the PROGRAM FILE
DEFINTION TABLE 307.
GET all device attributes from each device from the FILE
ATTRIBUTE TABLE 308
For all blocks in the BLOCK TABLE for this program

For each block
Get all tokens used and its usage type
Case usage type of

— Mark the column ofthe attribute as “K” When it is not E/D.
R — Mark the column ofthe attribute as “R”

E — Mark the column of the attribute as “E” When it is not R/W

D — Mark the column ofthe attribute as “D”
V _

W

W

Mark the column of the attribute as “V”
— Mark the column ofthe attribute as “W” When it is not R/W

OTHERS
Mark the column as NIL

END CASE
DISPLAY all column values for the device and its attributes

The pseudo code assumes that READ/ WRITE, ENTRY/DIS
PLAY, VALUE CHANGED is the priority required for track
ing the chart.

By using the method disclosed herein of organizing the
legacy language grammars and program database, this data
tracking chart can be enhanced to provide the folloWing capa
bilities:

