US 20090055810A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2009/0055810 A1

Kondur 43) Pub. Date: Feb. 26, 2009
(54) METHOD AND SYSTEM FOR COMPILATION Publication Classification
AND EXECUTION OF SOFTWARE CODES
(51) Imt.CL
(75) Inventor: Shankar Kondur, Highland Park, GOGF 9/45 (2006.01)
NJ (US) (52) US.Cl .ot 717/140
57 ABSTRACT
izlrlr :lip]?:sliﬁge Address: The method and system disclosed herein is for compiling and
36 Greenleigh Drive executing a plurality of software codes. The requests from
Sewell, NJ 08080 users are parsed and loaded using a set of child processes or a
thread pool. A request handler is used to handle the compila-
(73) Assignee: NCE Technologies Inc. tion and execution requests from the user. Requests from a
plurality of client processes are listed to compile and execute
(21) Appl. No.: 12/039,756 the solution codes from a plurality of users. A set of common
libraries and system libraries for each compilation request are
(22) Tiled: Feb. 29, 2008 stored in a memory and loaded on to a compiler. Using the
stored common libraries and system libraries, an executable
(30) Foreign Application Priority Data binary format of the software code is created by the compiler.
The executable binary format of the software code is loaded
Aug. 21,2007 (IN) oo 1866/CHE/2007 ~ on a file system for further executions.

201
PARSE INCOMING REQUESTS FROM USER BY /

USING A SET OF CHILD PROCESSES

l 202
LOAD THE PARSED REQUESTS IN A QUEUE BY j

USING A SET OF CHILD PROCESSES

l 203
HANDLE THE LOADED REQUESTS BY USING A /

SET OF FORKED CHILD PROCESSES

l 204
COMPILE THE SOFTWARE CODE BY USING A /0

SET OF FORKED CHILD PROCESSES

l 205
EXECUTE THE SOFTWARE CODE BY USING A /0

SET OF FORKED CHILD PROCESSES

l 2
LOAD EXECUTED SOFTWARE CODE ON A FILE jo6

SYSTEM

Patent Application Publication

102
RESPONSE HANDLER J 103
CLIENT
PROCESS
101
REQUEST DISPATCHER
104 j’z
RESPONSE HANDLER 103
CLIENT
PROCESS
101
REQUEST DISPATCHER
/ \
104 j’z
103
RESPONSE HANDLER
CLIENT
[/ ProCESS
101
REQUEST DISPATCHER
[T

104

FIGURE 1

Feb. 26,2009 Sheet1 of 3

US 2009/0055810 A1
109
108
V M SERVER j)s
RESPONSE QUEUE 106

]
| REQUEST QUEUE V

| REQUEST HANDLER K

109 107
108
V M SERVER 105
RESPONSE QUEUE 106

]
[reovestovee |/

| REQUEST HANDLER 4

107

Patent Application Publication Feb. 26,2009 Sheet 2 of 3 US 2009/0055810 A1

201
PARSE INCOMING REQUESTS FROM USER BY J

USING A SET OF CHILD PROCESSES

l 202
LOAD THE PARSED REQUESTS IN A QUEUE BY j

USING A SET OF CHILD PROCESSES

l 203
HANDLE THE LOADED REQUESTS BY USING A /

SET OF FORKED CHILD PROCESSES

l 204
COMPILE THE SOFTWARE CODE BY USING A J

SET OF FORKED CHILD PROCESSES

l 205
EXECUTE THE SOFTWARE CODE BY USING A /

SET OF FORKED CHILD PROCESSES

l 206
LOAD EXECUTED SOFTWARE CODE ON A FILE J

SYSTEM

FIGURE 2

Patent Application Publication Feb. 26,2009 Sheet 3 of 3 US 2009/0055810 A1

301
PARSE INCOMING REQUESTS FROM USER BY J

USING A THREAD POOL

;

LOAD THE PARSED REQUESTS IN A QUEUE BY 302
USING A THREAD POOL j
303
HANDLE THE LOADED REQUESTS BY USING A
THREAD POOL j
COMPILE THE SOFTWARE CODE BY USING A | 504
THREAD POOL J
305
EXECUTE THE SOFTWARE CODE BY USING A
THREAD POOL /
LOAD EXECUTED SOFTWARE CODE ON AFILE | 299
SYSTEM J

FIGURE 3

US 2009/0055810 Al

METHOD AND SYSTEM FOR COMPILATION
AND EXECUTION OF SOFTWARE CODES

BACKGROUND

[0001] The present invention relates to a method and sys-
tem for compiling and executing a software code. More par-
ticularly, the present invention relates to a method and a
system for concurrent compilation and execution of a plural-
ity of software codes.

[0002] In the existing methods of compiling a software
code, a compiler parses the software code, links the parsed
software code with common libraries and system libraries,
and creates an executable binary output of the software code.
The software codes from multiple users are compiled sepa-
rately with the above mentioned steps of parsing, linking, and
creating binary outputs. The overheads for compilation and
execution of these software codes increase with an increase in
the number of software codes.

[0003] Loading and parsing of common libraries, system
libraries, and header files for every compilation process
increases the compilation time. Further, handling multiple
requests for compilation may not be efficient. Therefore a
standard compiler may not achieve a large number of compi-
lations concurrently with limited resources. The above men-
tioned limitations increase with an increase in the number of
compilation requests.

[0004] Inview ofthe foregoing discussion there is an unmet
need for a system and a method of achieving a large number
of compilations concurrently with limited resources, han-
dling multiple compilation and execution requests efficiently,
and faster execution of a plurality of software codes.

SUMMARY OF THE INVENTION

[0005] The method and system disclosed herein addresses
the unmet need for a system and a method of achieving a large
number of compilations concurrently with limited resources,
handling multiple requests efficiently, and faster execution of
a plurality of software codes.

[0006] A separate thread is provided on a virtual machine
(VM) server to listen to broadcasts from a plurality of client
processes requesting for the VM server’s availability for com-
piling and executing a plurality of software codes. The VM
server then broadcasts VM server information to the request-
ing client processes. Once the client process obtains the VM
server information, a client socket sends a connection request
to the VM server. A VM server socket listens to the incoming
connection request from the client process. A request dis-
patcher is used to transmit requests to the VM server. Once the
connection is established between the VM server and the
client process, the incoming requests from the client process
to the VM server is stacked in a request queue to be handled.
The requests from the client processes are for compiling and
executing the software codes submitted by the users. A
request handler present in the VM server is used to handle the
requests stacked in the request queue. The requests are taken
from the request queue and handled by a request handler
thread pool. The handled requests are stacked as run requests
in a separate run request queue. A response queue is provided
on the VM server to collect the responses to be transmitted to
the client processes. The responses to the requests from the
client processes may be the executable binary format of the
software codes or the output generated by executing the soft-

Feb. 26, 2009

ware codes. The response handler provided on each of the
client process handles the response from the VM server.
[0007] The method and system disclosed herein uses a
compiler. The compiler uses a system file cache and a binary
cache that are maintained for each client process. The com-
mon libraries, the system libraries and the header files
required for each compilation are stored in the system file
cache. The object files or class files obtained after each com-
pilation are stored in the binary cache. During the compilation
of the software code, if a required header or library is not
available on the system file cache, the respective header or
library file is loaded from a file system to the system file
cache. The header or library file stored in the system cache is
used for current and subsequent compilations. If the software
code’s source file is not modified since the last compilation,
then the object file or the class file stored in the binary cache
is used for compilation. The binary cache is updated with
object files and class files generated with every new compi-
lation. The libraries and headers stored in the system file
cache and the object files and class files stored in the binary
cache are linked to generate the required executable of the
software code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The foregoing summary, as well as the following
detailed description of the embodiments, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, exemplary construc-
tions of the invention are shown in the drawings. The con-
structions below illustrate the invention in a single tenant
scenario. The invention may also be used in a multi-tenant
scenario, wherein a tenant key is added to all the relevant
tables. However, the invention is not limited to the specific
methods and instrumentalities disclosed herein.

[0009] FIG.1 is an exemplary illustration of multiple com-
pilation requests handling and compiling of multiple software
codes.

[0010] FIG. 2 illustrates a first method of compiling and
executing a plurality of software codes.

[0011] FIG. 3 illustrates a second method of compiling and
executing a plurality of software codes.

DETAILED DESCRIPTION OF THE DRAWINGS

[0012] FIG.1 is an exemplary illustration of multiple com-
pilation requests handling and compiling of multiple software
codes. Using client processes 101, software codes created by
a plurality of users are transferred to a virtual machine (VM)
server 109 for further compilation, execution, and evaluation
of the software codes. Each user’s requests for compilation
and execution of the software codes are generated by the
corresponding client process 101 and transmitted to the VM
server 109. The VM server 109 comprises a request queue
106, a request handler 107, a response queue 105, and a VM
server socket 108. Firstly, the VM server information is pro-
vided to each of the client processes 101. The information is
transferred between the VM server socket 108 and the client
sockets 103. The VM server information comprises the type
of VM server 109, details of the listening port of the VM
server 109, and the hostname of the VM server 109. A sepa-
rate thread is provided on the VM server 109 to listen to
broadcasts from the client processes 101 requesting for the
VM server’s 109 availability. The VM server 109 then broad-
casts VM server information to the client processes 101. Once

US 2009/0055810 Al

a client process 101 obtains the VM server information, the
client socket 103 sends a connection request to the VM server
109. The VM server socket 108 listens to the incoming con-
nection request from the client process 101. A request dis-
patcher 104 is used to transmit requests from the client pro-
cess 101 to the VM server 109. The VM server socket 108 has
the capability of accepting connections from multiple client
processes 101. Once the connection is established between
the VM server 109 and the client process 101, the incoming
requests from the client process 101 to the VM server 109 is
stacked in a request queue 106. The requests from the client
processes 101 are for compiling and executing the software
codes submitted by the users. Multiple requests to a VM
server 109 may be issued from a single client process 101 or
a plurality of client processes 101. The request handler 107
present in the VM server 109 is used to handle the requests
stacked in the request queue 106. The requests are taken from
the request queue 106 and handled by a request handler thread
pool or a request handling set of forked child processes. The
handled requests are stacked as run requests in a separate run
request queue. Since the run task of the run requests can be
time intensive, the run requests are handled by a separate run
request handler thread pool or a run request handling set of
forked child processes. The request handler thread pool and
the run request handler thread pool are provided separately to
avoid exhaustion of threads while handling multiple compi-
lation requests. A response queue 105 is provided on the VM
server 109 to collect the responses to be transmitted to the
client processes 101. The responses to the requests from the
client processes 101 may be the executable binary format of
the software codes or the output obtained by executing the
software codes. A binary cache is used to store object and
class files, wherein the object and class files are generated by
compiling the software codes. The response handler 102 pro-
vided on each of the client process 101 handles the response
from the VM server 109. In one embodiment of the invention,
a single VM server 109 is employed for compiling and in
another embodiment of the invention, a plurality of VM serv-
ers 109 may be employed for compilation and execution of
software codes.

[0013] FIG. 2 illustrates a first method of compiling and
executing a plurality of software codes. The client processes
101 broadcast requests for availability of the VM server 109
for compiling the software codes. Through a listening port,
the VM server 109 continually listens to the broadcasts for
requests from the client processes 101. Further the VM server
109 sends the VM server information to a client process 101
announcing the VM server’s 109 availability for handling
compilation requests. The availability ofthe VM server 109 is
handled by a separate thread.

[0014] A request handling set of child processes is used for
parsing 201 incoming requests and loading 202 the incoming
requests in a request queue 106. A compilation set of child
processes is used for compiling the software codes and an
execution set of child processes is used for executing the
compiled software codes. Each of the three sets of child
processes is forked. The request handling set of forked child
processes listens to the compilation and execution requests
from each of the plurality of client processes 101. The request
handling set of forked child processes then accepts and stacks
the compilation and execution requests in a request queue.
The request handling set of forked child processes further
separates the requests for compilation and requests for execu-
tion of the software codes. The request handling set of forked

Feb. 26, 2009

child processes transfers the execution requests from the
request queue to a run request queue and stacks the execution
requests in the run request queue. The compilation set of
forked child processes handles 203 the requests from the
request queue and compiles 204 the software codes corre-
sponding to the handled requests. The compilation set of
forked child processes then sends a compilation response
back to the client process 101. The execution set of forked
child processes handles 203 the run requests from the run
request queue and executes 205 the software codes corre-
sponding to the handled run requests. The executed software
code is then loaded on a file system 206. The execution set of
forked child processes then sends the execution response
back to the client process 101.

[0015] In one implementation of the first method of com-
piling and executing a plurality of software codes, the soft-
ware codes may be coded in a C/C++ programming language.
In another implementation of the first method, the software
codes may be coded in Java® programming language.
[0016] FIG. 3 illustrates a second method of compiling and
executing a software code. The client processes 101 broadcast
requests for availability of the VM server 109 for compiling
the software codes. Through a listening port, the VM server
109 continually listens to the broadcasts for requests from the
client processes 101. Further the VM server 109 sends the VM
server information to a client process 101 announcing the VM
server’s 109 availability for handling compilation requests.
The availability of the VM server 109 is handled by a separate
thread.

[0017] A requesthandlingthread pool is provided to handle
the incoming compilation and execution requests from the
client processes 101. The request handling thread pool con-
tinually listens to compilation and execution requests from
client processes 101. The request handling thread pool then
accepts and stacks the compilation and execution requests in
a request queue. The request handling thread pool further
separates the compilation and execution requests. The request
handling thread pool transfers the execution requests from the
request queue to a run request queue and stacks the requests in
the run request queue. A compilation thread pool handles 303
the requests from the request queue and compiles 304 the
software codes corresponding to the handled requests. The
compilation thread pool requests then sends a compilation
response back to the client process 101. An execution thread
pool handles 303 the execution requests from the run request
queue and executes 305 the software codes corresponding to
the handled run requests. The executed software code is then
loaded on a file system 306. The execution thread pool then
sends the execution response back to the client process 101.
[0018] In one implementation of the invention, the com-
piler employs a system file cache and a binary cache. The
system file cache is used to store the common libraries and
system libraries required for the compilation of the software
codes. Header files required for compiling software codes
coded in C/C++ programming language may also be stored in
the system file cache. The binary cache is used to store the
object files and class files generated as outputs from the
compilation of software codes. The object files are generated
when software codes coded in C/C++ programming language
are compiled. The class files are generated when software
codes coded in Java programming language are compiled.
The binary cache is maintained separately for each client
process 101. During the compilation of a software code, if a
required header or library file is not available on the system

US 2009/0055810 Al

file cache, the required header or library file is loaded from a
file system to the system file cache. The loaded header or
library file is used for current and subsequent compilation of
the software codes. The system file cache is updated when a
new compilation request, requiring a header or a library file
not present in the system file cache, is processed.

[0019] During the compilation of a software code coded in
C/C++ programming language, if a source file of the software
code has not undergone modifications since the previous
compilation, then the object file stored in the binary cache
from the previous compilation of the source file is used for
current compilation of the C/C++ software code. During the
compilation of a software code coded in Java programming
language, if a source file of the software code has not under-
gone modifications since the previous compilation, then the
class file stored in the binary cache from the previous com-
pilation of the source file is used for current compilation of the
Java software code.

[0020] The system file cache and the binary file cache are
updated with every compilation. For the execution ofa C/C++
software code, the required common libraries, system librar-
ies, and the header files stored in the system file cache are
linked with the object files in the binary cache to generate an
executable file from the software code. For the execution of a
Java software code, the required class libraries, system librar-
ies, and other common libraries stored in the system file cache
are linked with the class files in the binary cache to generate
an executable file from the software code. The final execut-
able files may then be written into a file system.

[0021] Inthedisclosed invention for compiling C/C++ soft-
ware codes, an open source compiler such as Intel® C++
compiler, Ten DRA® compiler, GNU compiler collection
(GCC), open Watcom® C compiler, etc., may be used for
compilation. For compiling Java software codes, an open
source compiler such as Jikes compiler from IBM, Inc., the
Sun’s JDK from Sun Microsystems, Inc., Eclipse® compiler,
etc., may be used for compilation. The compilation features
described above may be incorporated in such open source
compilers.

[0022] It will be readily apparent to those skilled in the art
that the various methods and algorithms described herein may
be implemented in a computer readable medium, e.g., appro-
priately programmed for general purpose computers and
computing devices. Typically a processor, for e.g., one or
more microprocessors will receive instructions from a
memory or like device, and execute those instructions,
thereby performing one or more processes defined by those
instructions. Further, programs that implement such methods
and algorithms may be stored and transmitted using a variety
of media, for e.g., computer readable media in a number of
manners. In one embodiment, hard-wired circuitry or custom
hardware may be used in place of, or in combination with,
software instructions for implementation of the processes of
various embodiments. Thus, embodiments are not limited to
any specific combination of hardware and software. A “pro-
cessor” means any one or more microprocessors, Central
Processing Unit (CPU) devices, computing devices, micro-
controllers, digital signal processors, or like devices. The
term “computer-readable medium” refers to any medium that
participates in providing data, for example instructions that
may be read by a computer, a processor or a like device. Such
a medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media include, for example, optical or magnetic

Feb. 26, 2009

disks and other persistent memory volatile media include
Dynamic Random Access Memory (DRAM), which typi-
cally constitutes the main memory. Transmission media
include coaxial cables, copper wire and fiber optics, including
the wires that comprise a system bus coupled to the processor.
Transmission media may include or convey acoustic waves,
light waves and electromagnetic emissions, such as those
generated during Radio Frequency (RF) and Infrared (IR)
data communications. Common forms of computer-readable
media include, for example, a floppy disk, a flexible disk, hard
disk, magnetic tape, any other magnetic medium, a Compact
Disc-Read Only Memory (CD-ROM), Digital Versatile Disc
(DVD), any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a Random
Access Memory (RAM), a Programmable Read Only
Memory (PROM), an Erasable Programmable Read Only
Memory (EPROM), an Electrically Erasable Programmable
Read Only Memory (EEPROM), a flash memory, any other
memory chip or cartridge, a carrier wave as described here-
inafter, or any other medium from which a computer canread.
In general, the computer-readable programs may be imple-
mented in any programming language. Some examples of
languages that can be used include C, C++, C#, or Java®. The
software programs may be stored on or in one or more medi-
ums as an object code. A computer program product, com-
prising computer executable instructions embodied in a com-
puter-readable medium, comprises computer parsable codes
for the implementation of the processes of various embodi-
ments.

[0023] Where databases are described, such as the question
compendia database 109¢, it will be understood by one of
ordinary skill in the art that (i) alternative database structures
to those described may be readily employed, and (ii) other
memory structures besides databases may be readily
employed. Any illustrations or descriptions of any sample
databases presented herein are illustrative arrangements for
stored representations of information. Any number of other
arrangements may be employed besides those suggested by,
e.g., tables illustrated in drawings or elsewhere. Similarly,
any illustrated entries of the databases represent exemplary
information only; one of ordinary skill in the art will under-
stand that the number and content of the entries can be dif-
ferent from those described herein. Further, despite any
depiction of the databases as tables, other formats including
relational databases, object-based models and/or distributed
databases could be used to store and manipulate the data types
described herein. Likewise, object methods or behaviors of a
database can be used to implement various processes, such as
the described herein. In addition, the databases may, in a
known manner, be stored locally or remotely from a device
that accesses data in such a database.

[0024] The present invention can be configured to work in
a network environment including a computer that is in com-
munication, via a communications network, with one or more
devices. The computer may communicate with the devices
directly or indirectly, via a wired or wireless medium such as
the Internet, Local Area Network (LAN), Wide Area Network
(WAN) or Ethernet, Token Ring, or via any appropriate com-
munications means or combination of communications
means. Each of the devices may comprise computers, such as
those based on Intel® processors that are adapted to commu-
nicate with the computer. Any number and type of machines
may be in communication with the computer.

US 2009/0055810 Al

[0025] The foregoing examples have been provided merely
for the purpose of explanation and are in no way to be con-
strued as limiting of the present method and system disclosed
herein. While the invention has been described with reference
to various embodiments, it is understood that the words,
which have been used herein, are words of description and
illustration, rather than words of limitations. Further,
although the invention has been described herein with refer-
ence to particular means, materials and embodiments, the
invention is not intended to be limited to the particulars dis-
closed herein; rather, the invention extends to all functionally
equivalent structures, methods and uses, such as are within
the scope of the appended claims. Those skilled in the art,
having the benefit of the teachings of this specification, may
effect numerous modifications thereto and changes may be
made without departing from the scope and spirit of the
invention in its aspects.

We claim:

1. A method of compiling and executing a plurality of
software codes provided by a plurality of clients, comprising
the steps of:

providing a request handling set of child processes to

handle compilation and execution requests from said
plurality of clients, wherein said request handling set of
child processes are forked;

providing a compilation set of child processes, wherein

said compilation set of child processes are forked;
providing an execution set of child processes, wherein said
execution set of child processes are forked;

parsing said compilation and execution requests using the

request handling set of child processes;

loading said parsed compilation and execution requests in

a request queue using the request handling set of child
processes;

transferring the execution requests from said request queue

to a run request queue using the request handling set of
child processes;

compiling said plurality of software codes by processing

the compilation requests in the request queue using the
compilation set of child processes; and

executing the plurality of software codes by processing the

execution requests in the run request queue using the
execution set of child processes.

2. The method of claim 1, wherein the request handling set
of child processes listen for broadcasts of requests from each
of the plurality of clients.

3. The method of claim 1 further comprising the step of
transmitting a response to a requesting client subsequent to
the handling of a request of said requesting client, wherein
said request is one of a compilation and an execution request.

4. A method of compiling and executing a plurality of
software codes provided by a plurality of clients, comprising
the steps of:

providing a request handling thread pool to handle compi-

lation and execution requests from said plurality of cli-
ents;

providing a compilation thread pool;

providing an execution thread pool;

parsing said compilation and execution requests using said

request handling thread pool;

loading said parsed compilation and execution requests in

a request queue using the request handling thread pool;

Feb. 26, 2009

transferring the execution requests from said request queue
to a run request queue using the request handling thread
pool;

compiling said plurality of software codes based on the

compilation requests in the request queue using said
compilation thread pool; and

executing the plurality of software codes based on the

execution requests in the run request queue using said
execution thread pool.

5. The method of claim 4, wherein said step of compiling
the plurality of software codes comprises linking each of the
plurality of software codes with common libraries and system
libraries.

6. The method of claim 4, wherein said step of compiling
the plurality of software codes comprises loading said com-
mon libraries and system libraries, storing the common librar-
ies and system libraries in a system file cache, loading and
parsing each of plurality of software codes, and linking said
parsed software codes with the common libraries and system
libraries.

7. The method of claim 6, wherein said system file cache
stores header files used for compiling C and C++ software
codes.

8. The method of claim 5, wherein said system file cache
stores class libraries for compiling Java® software codes.

9. The method of claim 4, wherein said step of compiling
the plurality of software codes comprises storing object files
in a binary cache, wherein said stored object files are used in
subsequent compilations of the C and C++ software codes.

10. The method of claim 4, wherein said step of compiling
the plurality of software codes comprises storing class files in
the binary cache, wherein said stored class files are used in
subsequent compilations of the Java® software codes.

11. A system for compiling and executing a plurality of
software codes provided by a plurality of clients, comprising:

a compilation server to compile each of said plurality of

software codes, said compilation server comprising:

a parsing module to parse incoming compilation and
execution requests from said plurality of clients;

arequest handler to load said compilation and execution
requests in a queue;

a system file cacheto store common libraries and system
libraries;

acompiler to link each of the plurality of software codes
with said stored common libraries and system librar-
ies, and compile said linked software codes;

a binary cache to store output files generated by compil-
ing the linked software codes;

an execution module to execute said compiled software

codes; and

a file system to load said executed software codes.

12. The system of claim 11, wherein said system file cache
is used for storing header files used for compiling C and C++
software codes.

13. The system of claim 11, wherein said system file cache
is used for storing class libraries used for compiling Java
software codes.

14. The system of claim 11, wherein said binary cache
stores object files generated by compiling C and C++ soft-
ware codes.

15. The system of claim 11, wherein said binary cache
stores class files generated by compiling Java software codes.

US 2009/0055810 Al

16. A computer program product comprising computer
executable instructions embodied in a computer-readable
medium, said computer program product including:

a first computer parsable program code for providing a
request handling set of child processes to parse incom-
ing compilation and execution requests and load said
parsed requests in a queue, wherein said request han-
dling set of child processes are forked;

a second computer parsable program code for providing a
request handling thread pool to parse incoming compi-
lation and execution requests and load said parsed
requests in a queue;

a third computer parsable program code for providing a
compilation set of child processes to compile a plurality
of software codes, wherein said compilation set of child
processes are forked;

a fourth computer parsable program code for providing a
compilation thread pool to compile said plurality of
software codes;

Feb. 26, 2009

a fifth computer parsable program code for parsing and
loading common libraries and system libraries;

an sixth computer parsable program code for storing said
parsed common libraries and system libraries in a sys-
tem file cache;

a seventh computer parsable program code for parsing and
loading the plurality of software codes, and linking said
parsed software codes with the parsed common libraries
and system libraries;

an eighth computer parsable program code for providing
an execution set of child processes to execute the plural-
ity software codes, wherein said execution set of child
processes are forked;

a ninth computer parsable program code for providing an
execution thread pool to execute the plurality of soft-
ware codes; and

a tenth computer parsable program code for loading said
executed software codes on a file system.

sk sk sk sk sk

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

