
US011249734B2

(12) United States Patent
Patni et al .

(10) Patent No .: US 11,249,734 B2
(45) Date of Patent : Feb. 15 , 2022

(56) References Cited (54) TRI - AFFINITY MODEL DRIVEN METHOD
AND PLATFORM FOR AUTHORING ,
REALIZING , AND ANALYZING A
CROSS - PLATFORM APPLICATION

U.S. PATENT DOCUMENTS

7,555,706 B2 * 6/2009 Chapman
(71) Applicants : Sangeeta Patni , Bengaluru (IN) ;

Kartik Ram Asatkar , Nagpur (IN)

GO5B 15/02
715/234

G06F 9/451 10,331,423 B1 * 6/2019 Parsolano
(Continued)

(72) Inventors : Sangeeta Patni , Bengaluru (IN) ;
Kartik Ram Asatkar , Nagpur (IN) OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

(21) Appl . No .: 16 / 967,742

Brisebois et al . , “ A Semantic Metadata Enrichment Software Eco
system based on Metadata and Affinity Models ” , 2017 , MECS
Modern Education and Computer Science Press , 13 pages . (Year :
2017) . *

(Continued)
(22) PCT Filed : Feb. 6 , 2019

PCT / IB2019 / 050938
Primary Examiner Ted T. Vo
(74) Attorney , Agent , or Firm — Ashok Tankha (86) PCT No .:

$ 371 (c) (1) ,
(2) Date : Aug. 6 , 2020

(87) PCT Pub . No .: WO2019 / 155369
PCT Pub . Date : Aug. 15 , 2019

(65) Prior Publication Data
US 2020/0371755 A1 Nov. 26 , 2020

(30) Foreign Application Priority Data

(57) ABSTRACT

A tri - affinity model driven platform (TAMDP) employs a
tri - affinity model driven method using a human affinity
model (HAM) , a machine affinity model (MAM) , and an
analysis affinity model (AAM) , to generate an application
specific instance of predefined meta - models for building a
cross - platform application . A developer authors an applica
tion in the HAM which is compiled to the MAM by a
compiler , which is transformed to the AAM by a model - to
model transformer . À translator optionally translates a HAM
to another HAM . A generator generates source code from
MAM . Build tooling builds application binaries for different
rendering types from a source code generated for the appli
cation . A development time analyzer and visualizer (DTAV)
enables development time analyses using the AAM . After
prototyping and introspection , a TAMDP runtime subsystem
executes the generated application and a machine learning
based recommendation engine enhances the application
using the AAM after analysis by the DTAV and a runtime
analyzer and visualizer .

Feb. 7 , 2018 (IN) 201841004648

(51) Int . Cl .
G06F 9/44 (2018.01)
G06F 8/34 (2018.01)

(Continued)
(52) U.S. Cl .

CPC G06F 8/34 (2013.01) ; G06F 8/41
(2013.01) ; H04L 51/02 (2013.01)

(58) Field of Classification Search
CPC G06F 8/34 ; GO6F 8/41 ; H04L 51/02

(Continued) 10 Claims , 24 Drawing Sheets

TRANSLATE 501
503

502

COMPILE Human
Affinity
Model
(HAM)

Machine
Affinity
Model
(MAM)

Analysis
Afinity
Model
(AAM)

TRANSFORM
TRANSFORM

301

Predefined Meta - Models

User Interface Data Service Activity

Locale Namespace Application Configuration

500

US 11,249,734 B2
Page 2

(51) Int . Ci .
G06F 8/41 (2018.01)
H04L 12/58 (2006.01)

(58) Field of Classification Search
USPC 717 / 104-109
See application file for complete search history .

(56) References Cited

U.S. PATENT DOCUMENTS

10,372,721 B2 *
10,504,020 B2 *
10,985,997 B2 *

2014/0019865 A1 *

8/2019 Karpistsenko
12/2019 Trenholm
4/2021 Duggal
1/2014 Shah

G06F 16/25
G06K 9/6227
G06Q 30/0635
HO4N 21/8545

715/731
G06F 40/166

717/103
G06F 8/34

717/107
GOON 5/022

2014/0258968 A1 * 9/2014 Brown

2016/0188302 A1 * 6/2016 Fredrick

2018/0165604 A1 * 6/2018 Minkin

OTHER PUBLICATIONS

Dumas et al . , “ Multimodal Interfaces : A Survey of Principles ,
Models and Frameworks ” , 2014 , ResearchGate , pp . 1-25 . (Year :
2014) . *
Revault et al . , " A Metamodeling technique : The METAGEN sys
tem ” , 2014 , ResearchGate , pp . 1-13 . (Year : 2014) . *
Danziger et al . , “ Adapting Human - Machine Interfaces to User
Performance ” , 2008 , IEEE , 5 pages . (Year : 2008) . *

* cited by examiner

U.S. Patent Feb. 15 , 2022 Sheet 1 of 24 US 11,249,734 B2

Providing predefined canonical meta - models with descriptive
attributes

102

Deriving one or more non - canonical meta - models for human
affinity from predefined canonical meta - models

103

Deriving one or more non - canonical meta - models for analysis
affinity from predefined canonical meta - models

104 Creating an instance of an application model for a specific
application by setting values of descriptive attributes of canonical

predefined meta - models

105
Compiling or transforming created instance of the application

model to achieve three affinity models

A

100

FIGIA

U.S. Patent Feb. 15 , 2022 Sheet 2 of 24 US 11,249,734 B2

A

106 Authoring one or more human affinity models using one or
more domain specific languages and translating between a

plurality of human affinity models

107
Analyzing and visualizing compiled application under
development using one or more analysis affinity models

108 Generating a source code from the machine affinity model of
the analyzed and visualized application for targeted server

and client platforms .

109 Testing the analyzed and visualized application in a
prototype mode with statically provided sample data or

randomly generated sample data

B

100
FIG.1B

U.S. Patent Feb. 15 , 2022 Sheet 3 of 24 US 11,249,734 B2

B

110
Deploying tested application in an instance of the tri - affinity
model driven platform runtime environment and publish the

application in the tri - affinity model driven platform application
store

111
Executing generated application binary in an instance of the tri

affinity model driven platform runtime environment for (n)
number application clients and the application server in the tri

affinity model driven platform server type of rendition

FIGIC

U.S. Patent Feb. 15 , 2022 Sheet 4 of 24 US 11,249,734 B2

201

Application
Specification

The Tri - affinity
Model Driven

Platform
(TAMDP)

The TAMDP
based

Development
Subsystem

The TAMDP
based

Run - time
Subsystem

202
203

204

FIG.2 200

U.S. Patent Feb. 15 , 2022 Sheet 5 of 24 US 11,249,734 B2

301

Predefined Meta - Model

gala

Service

Active

Locale

Namespace

Configuration

Application

300

FIG.3

U.S. Patent Feb. 15 , 2022 Sheet 6 of 24 US 11,249,734 B2

Predefined
Meta - Models

Analysis
Affinity Meta

Models

Human
Affinity

Meta - Models 301

401 401a 000
+
}
$ Derived

from 301

1
1
1
1

Derived
from 301 }

}

400

FIG.4

U.S. Patent Feb. 15 , 2022 Sheet 7 of 24 US 11,249,734 B2

TRANSLATE 501
503

502

COMPILE Human
Affinity
Model
(HAM)

Machine
Affinity
Model

(MAM)

Analysis
Affinity
Model
(AAM)

TRANSFORM
TRANSFORM

301

Predefined Meta - Models

User Interface Data Service Activity

" " " " " Locale Namespace Application Configuration

500
FIG.5

U.S. Patent Feb. 15 , 2022 Sheet 8 of 24 US 11,249,734 B2

501 503

601a 602

Human
AUTHORING Affinity

Model
(HAM)

DEVELOPER

AUT THORING
APP MGR

MANAGING 603 6015 ENHANCING ENHANCING Analysis
Affinity INTROSPECTING VISUALIZING ming Model ANALYSING
(AAM)

END DEVELOPER
USER

App
Analytics
Engine

MACHINE
Source Machine

PROCESSING
code Affinity

Model
MACHINE

10110011 (MAM) PROCESSING 01110010
10001010
0110101
Binary
code Development Time

App
Usage
Data Machine

Learning based
Recommendati

on

Run Time
502

FIG.6 600

U.S. Patent Feb. 15 , 2022 Sheet 9 of 24 US 11,249,734 B2

301 701

Meta - Model

ToDo App
Models UI

Biz Logic
Data

702

Service

Activity CRM App
Models

Locale Biz Logic

Namespace

Configuration

Application

700

FIG.7

U.S. Patent Feb. 15 , 2022 Sheet 10 of 24 US 11,249,734 B2

Front - End (Client
side) PRESENTATION

Back - End (Server - side)
LOGIC

External
SYSTEM DATA Data Stores

Client
#n

NOSOL
Client

2

RDB
MS

Server
API # 1 Blockchain
M DO

BE Connector # 1
Screen

1 Business ERP
API # 2 Logic # 1

Clienti Connector # 2

B Sors Business
Logic # 2 Screen

2 API #ni

00 Connector #n Business
Logic #n Othe

Screen
#n

800

FIG.8

U.S. Patent Feb. 15 , 2022 Sheet 11 of 24 US 11,249,734 B2

IRESIRANOX

8

FOX0

*

PESEMMON

900

FIG.9A

U.S. Patent Feb. 15 , 2022 Sheet 12 of 24 US 11,249,734 B2

to Bellion US }
FRESHVATION Chicas

you conside
RESERON OAK

PRESEXUELON

Il colo Server

900

FIG.9B

U.S. Patent Feb. 15 , 2022 Sheet 13 of 24 US 11,249,734 B2

Front End (Cleut - Side) Back Ox { Serres - ade)
PRESENTATION LOGO DAN Phone

Bau Bad (Serret side)
FRESEVATION

38

Back End (Server side
BOBO DA

Bu 22

900

FIG.9C

U.S. Patent Feb. 15 , 2022 Sheet 14 of 24 US 11,249,734 B2

11 *

3 (18833 Res } TI Sa Bany

Usado

1000

FIG.10

U.S. Patent Feb. 15 , 2022 Sheet 15 of 24 US 11,249,734 B2

(featre
{ were

Cosphical sou (103 : 3plicability

SANS

iles 501
was e

502

Saw Pa cha Ordinazalise
Assal kuskos

1100
FIG.11

U.S. Patent Feb. 15 , 2022 Sheet 16 of 24 US 11,249,734 B2

188

* W * : S
WBSS

X

1200

FIG.12

U.S. Patent Feb. 15 , 2022 Sheet 17 of 24 US 11,249,734 B2

X3

WAX AX35 w

M

isan
>

1300

FIG.13

U.S. Patent Feb. 15 , 2022 Sheet 18 of 24 US 11,249,734 B2

Front - End (Chen - side Back - End Server - side

Services Static sample viata

See

PA

Random generated
sample data

1400
FIG . 14

U.S. Patent Feb. 15 , 2022 Sheet 19 of 24 US 11,249,734 B2

Synchronization Notification

Systein Apps

App Store

App Manager App Dashboard

Connectors

SORDB OLUM

Audit Bas Site Web APIs . Maps Payißent

Logo Execution Engine Cognitive AI , M ...

Recommendation Engine Dispatcher Email , IM ..

1500
FIG.15

U.S. Patent Feb. 15 , 2022 Sheet 20 of 24 US 11,249,734 B2

Deployed Apps
mine YYYY.Y.V

Adiniu Access

System App

System App
* 1601

1601

naman na maneno M

Non system 1602 App +1

Non - system

1600
FIG.16

U.S. Patent Feb. 15 , 2022 Sheet 21 of 24 US 11,249,734 B2

Deployed Apps

Appa
px ? PRIET

ERUSICEX

03
Estemas

ERRORSE -
{ Wiers

1700

FIG.17

U.S. Patent Feb. 15 , 2022 Sheet 22 of 24 US 11,249,734 B2

luxtrospect

?

Role based access ,
features dependent
on device
capabilities , etc

25 :

Etusi ww 033 x kevice

B

DActivity history , Provena drus
es ..

to

1800

FIG.18

U.S. Patent Feb. 15 , 2022 Sheet 23 of 24 US 11,249,734 B2

Aadut Log D3t3 Store

Vasol

Blockchain

1900

FIG.19

U.S. Patent Feb. 15 , 2022 Sheet 24 of 24 US 11,249,734 B2

arp Usage

Response TRBS

Agp basiszexti083

Age Dashboard

A?p Audit Managey Devde imagpies

2013
Sites

Warisan Reka

2000

FIG . 20

US 11,249,734 B2
1 2

TRI - AFFINITY MODEL DRIVEN METHOD The application driven digital continuum with the con
AND PLATFORM FOR AUTHORING , tinuously engaged user community also provides a signifi
REALIZING , AND ANALYZING A cant opportunity as businesses now have an overview of
CROSS - PLATFORM APPLICATION how their customers and users interact and engage with their

5 products and services using the digital medium , by collect
This is a national stage application of the Patent Coop ing and analyzing data provided by digital interactions of the

eration Treaty (PCT) international application titled “ Tri users . Businesses also have access to information of how ,
Affinity Model Driven Method And Platform For Authoring , when , and where their customers interact with the busi
Realizing , And Analyzing A Cross - Platform Application ” , nesses , enabling the businesses to fine tune , personalize , and
application number PCT / IB2019 / 050938 , filed in the Inter- 10 customize their products and services . Data analysis , with new technologies such as artificial intelligence , is providing national Bureau of the WIPO on Feb. 6 , 2019 , which claims
priority to and benefit of Provisional Patent application no . tools to businesses to improve the customer intimacy and delivery .
201841004648 , filed in India on Feb. 7 , 2018 and titled A typical cross - platform application consists of a multi “ Tri - affinity Model Driven Method And Platform For 15 plicity of user interfaces , each with a target client device , Authoring , Realizing , And Analyzing A Cross - platform data models , means of authenticating users by validating the Application " . identity of permitted end users of the cross - platform appli

cation , means of authorizing users to enforce access control FIELD OF THE INVENTION to various parts of the cross - platform application , a domain
20 logic including process flows , integrations to other services

Embodiments of the present disclosure relate to cross- comprising , for example , storage of cross - platform applica
platform application development , and more particularly to , tion data to a persistent store , ability to send notifications to
hi - affinity model driven method and platform for authoring , end users , provision of an application programming inter
realizing , and analyzing a cross - platform application . face (API) of the cross - platform software application for

25 consumption by other systems , use of features of the target
BACKGROUND client device , and localizations for an intended end user

audience . A typical cross - platform application is developed
Software applications are all around us . Software appli- in two parts , namely , an application server side and an

cations impact a significant part of personal and work lives application client side . The application server side should
of humans and have digitized large parts of interactions of 30 contain the domain logic and associated constituents . The
humans with businesses and other humans , creating a digital application client side contains a user interface and associ
continuum . Businesses need to respond to the digital con- ated constituents . The cross - platform applications comprise
tinuum by building applications that are available and any of the following combinations , namely , server side only ,
responsive to customers of the businesses and users in a server side and client side , and client side only .
digital medium and provide a ubiquitous digital means of 35 The cross - platform application is developed using an
accessing products and services of the businesses . application development platform . The application develop

The current state of software application enabled business ment platform typically comprises an authoring language , a
processes is characterized by a significant usage of devices programming framework , programming libraries , and an
other than desktop computers by customers and users . With interpreter or a compiler . The application server side is
increased usage , ubiquity , and multiplicity of connected 40 hosted on a platform known as a server runtime platform .
devices having a general - purpose computing ability , busi- Examples of server runtime platforms are SalesForcel® of
nesses are increasingly choosing to build applications that salesforce.com , Inc. , Parse® of Parse , LLC , IBM® Cloud of
run on multiple client runtime platforms . Such applications International Business Machines Corporation . The applica
are known as cross platform applications . Application devel- tion client side is hosted on a platform known as a client
opers and business information technology (IT) profession- 45 runtime platform . Client runtime platforms can be classified
als that are tasked to build and run such cross - platform as smartphone platforms , for example , Android® by Google
applications need to carefully choose the client runtime LLC , iOS by Apple Inc. , Windows Phone® by Microsoft
platforms on which the cross - platform applications are to be Corporation , internet of things (IoT) platforms , for example ,
made available . The choice of the client runtime platforms Arduino® by Arduino Ag Corporation , Raspberry® by
is based on factors comprising , for example , relevance and 50 Raspberry Pi Foundation , etc.
ubiquity of client runtime platforms for target users , cost of Application development systems or platforms in use
host devices offering client runtime platforms , feature sets of today can be categorized as legacy , contemporary , native ,
client runtime platforms , availability of client runtime plat- and cross - platform . The legacy platforms have been the
forms , etc. The target users may change often as new devices platforms of choice for over a decade and more . Examples
are introduced in the market , making the task of availability 55 of legacy platforms are Java® platform , Enterprise Edition ,
of the cross platform applications on multiple target devices by Oracle America , Inc. , Microsoft .Net® by Microsoft
and client runtime platforms hard , specifically as the exist- Corporation , etc. Many open source programming frame
ing underlying platforms are evolving rapidly , with new works , for example , Spring Framework® by Pivotal Soft
modes of user engagement coming into existence with new ware , Inc. , Hibernate® by JBoss , Inc. , etc. , are also available
releases of the underlying platforms . 60 for the legacy platforms . Legacy platforms provide a low

Moreover , application developers and business IT profes- abstraction development environment . The low abstraction
sionals need to have a continued focus on user expectations , development environment presents a large skill surface area
ensuring users have a good experience with the products and in terms of varied technologies to be known for building an
services , while dealing with an unprecedented increase in application . The legacy platforms are mostly used for build
access points , reach , penetration , for example , in home 65 ing desktop web applications . The legacy platforms are not
automation , internet of things (MT) , wearables , automo- suitable for recent non - web clients such as smartphones ,
biles , etc. wearables , etc. The legacy platforms are also not suitable for

a

US 11,249,734 B2
3 4

cross platform application development . The legacy plat- platform would require a team of application developers to
forms are dominant in enterprise application development . be commissioned again , which would result in substantial

Contemporary platforms have gained traction in the last 7 costs for the business . Moreover , the conventional methods
to 8 years . Examples of contemporary platforms are Ruby- do not consider the new need of analysis in development
on - Rails® , Node.js® by Joyent Inc. , Angular , React , etc. 5 time and runtime of the application . At best , analysis has
The contemporary platforms provide a low abstraction been seen as an addendum to development activities . Fur development environment . The contemporary platforms thermore , the conventional application development meth require narrow but deep skills in multiple technologies for odology does not provide the external world with prior building an application . The contemporary platforms are knowledge about what the application contains . Users have mostly used for building scalable web applications and also 10 to use the application to infer what the application does , partially address cross - platform application development by what the application contains , and how the application targeting browser - based clients for some of the target interacts with the user's device . The developed application devices . While the contemporary platforms are dominant in
consumer application development , the contemporary plat is a black box for the users pile only the application
forms have also gained acceptance and adoption in enter- 15 developers are aware of the application completely . There is
prise application development . no way a human or a machine user can know about an

Native platforms are provided by operating system (OS) application prior to using the application .
or device creators . Examples of native platforms are As legacy platforms offer low abstraction and a lot of
Android® by Google LLC , iOS , Arduino® , Raspberry® , primitives , application development takes a long time and
etc. The native platforms are used for developing applica- 20 requires a high level of skill . Moreover , building native
tions for the OS or the devices alone and there is no cross - platform applications is not possible with native appli
possibility of cross platform development . The native plat- cation client - sides not being supported . Contemporary plat
forms typically provide a low abstraction development envi- forms do not exhibit much change in abstraction as com
ronment . The native platforms do not provide for application pared to legacy platforms . Development of cross - platform
server - side development and are used only for building 25 applications is possible using contemporary platforms , but
application client sides . The rate of evolution of the native the development is limited to a browser - based application
platforms has been high as new major versions of the OS , clients . By design , native platforms cannot be used for
language , and devices are released about once a year . cross - platform application development . Cross - platform

The increase in demand for cross - platform applications
has given rise to a new category of software development 30 levels of abstraction except for user interfaces . The cross

application development platforms continue to exhibit low
platforms known as cross - platform application development platform application development platforms are typically platforms . Cross - platform application development plat smartphone focused . To build cross platform applications forms are niche application development platforms built
during the smartphone era specifically for smartphone based targeted at multiple client platforms using the conventional
cross - platform application development . The cross - platform 35 method of hand coding using low abstraction platforms is
application development platforms provide better abstrac not resource efficient and does not scale . The conventional
tions as compared to legacy platforms and contemporary method for cross - platform application development is not
platforms for a user interface specification that is leveraged suitable due to factors such as increased demand for cross
for the development of cross platform applications . Most platform applications , increase in need for short lived or
cross - platform application development platforms provide a 40 situational applications , emergence of newer application
what - you - see - is - what - you - get (WYSIWYG) user interface deployment platforms such as internet of things (IoT) , bots ,
authoring tool . The cross - platform application development etc. , cost incurred on hiring developers , need for faster
platforms , for example , Kony® by Kony , Inc. , Mendix® by development of applications , and absence of analysis during
Mendix B.V. LLC , OutSystems® by OutSystems , Software the development and runtime phases of the applications .
Em Rede S.A. , Betty Blocks , etc. , address cross - platform 45 To provide a solution for building applications for mul
application development by targeting browser based clients tiple platforms and multiple devices , practitioners have
as well as native device platforms . developed model driven engineering methods using high
A predominant method adopted by most application cre- abstraction modeling techniques to model platform indepen

ators for creating cross - platform applications is to build the dent behaviours of applications , and then implementing
server side using a legacy platform or a contemporary 50 model transformations to achieve platform specific imple
platform and build the client side using native platforms . In mentations . Model driven high abstraction platforms for
this method , the application creators need to hire application development of cross platform applications that are targeted
developers skilled in each of the native platforms , the legacy at multiple client platforms are beneficial , for example , due
platforms , or the contemporary platforms . Such a develop- to reduction in skill level required to build applications ,
ment project would require a significant amount of time for 55 incorporation of best practices in the development of the
application development and testing . Since the application applications , churning out more applications with smaller
development process is manual , the application develop- development teams , increase in demand for applications ,
ment process is plagued with weaknesses inherent in any decrease in maintenance cost despite the rapid evolution in
human process , for example , a significant amount of time underlying platforms , increase in ability to incorporate
taken , and costs incurred due to a hand coding process from 60 design and development feedback from the business or
the conception of an idea to development of the application domain personnel during the process of design and devel
by an application developer with limited scope of re - using opment , etc. The model - driven method while being suitable
and analyzing the code , high dependence of the application for cross - platform application development , suffers low
development process on the application developer's skill adoption among lay developers and business information
level , leading to non - predictability of the overall quality of 65 technology (IT) application developers as the model - driven
the application , etc. Future changes to the application due to method is thought of being complex , requiring high skill
business requirements or the evolution of a native device levels , with tooling perceived to be expensive .

a

US 11,249,734 B2
5 6

Hence , there is a need for a tri - affinity model driven The scope of operations of an application developed using
method and a tri - affinity model driven platform for devel- the tri - affinity model driven method (TAMDM) comprises
oping , realizing , and analyzing a cross platform application . presenting user interfaces , a chat interface including an

application chat hot , accessing data objects , authenticating
SUMMARY OF THE INVENTION 5 users , controlling access to various parts of the application

based on authorization , containing business logic that may
The tri - affinity model driven method and the tri - affinity include work flows , integrating with third party data sources

model driven platform (TAMDP) disclosed herein address and services , sending notifications to end users on multiple
the above recited need for authoring , realizing , and analyz- channels , synchronizing selected data on a client device ,
ing a cross - platform application . The TAMDP employs the 10 introspecting an application model to provide information
tri - affinity model driven method and allows a lay developer about usage and intent of the application , providing recom
to develop cross platform applications . mendations for enhancing the application , recording the

The tri - affinity model driven method disclosed herein usage of the application by users , that is , an administrator
provides a modeling framework for cross - platform applica- and the end users , providing an application programming
tions with three affinities , that is , a human affinity , a machine 15 interface (API) of the software application for consumption
affinity , and an analysis affinity , each designed for its role by other systems , usage of native features of the client
and purpose in designing , building and analyzing cross- device , and localizations for an intended end user audience .
platform applications . In the tri - affinity model driven plat- The tri - affinity model driven platform (TAMDP) , which
form (TAMDP) , each of the three affinities is designed with employs the hi - affinity model - driven method (TAMDM) ,
a specific purpose in the authoring , realization , and analysis 20 comprises predefined canonical meta - models for applica
of cross - platform applications . The three affinity models are tions and hi - affinity model - driven tooling and infrastructure .
a human affinity model (HAM) , a machine affinity model A human application developer authors or hand - codes an
(MAM) , and an analysis affinity model (AAM) . application specification using a domain specific modeling
The human affinity model is used by humans to author an language such as A Language for Applications (Alfa) that

application . The machine affinity model is used by machines 25 results in creation of the human affinity model of the
to realize the application . The analysis affinity model is used application . The TAMDP comprises a compiler for trans
by humans and machines to perform various development forming the application specific human affinity model to an
time and runtime analyses , recommendations , and enhance- application specific machine affinity model . The TAMDP
ment of the application . The analysis affinity model aids further comprises a model - to - model transformer for trans
development , maintenance , and operations of the applica- 30 forming the machine affinity model to the analysis affinity
tion towards a specific purpose of the application . From a model . The TAMDP further comprises a development time
human affinity model or a machine affinity model of a analyzer and visualizer for performing development time
cross - platform application , the other affinity models , that is , analyses of the application using the analysis affinity model .
the machine affinity model and the analysis affinity model or The TAMDP further comprises a model - to - source code
the human affinity model and the analysis affinity model can 35 generator for generating a source code for the application as
be derived . one of many rendering types by generating a source code for

The class of applications that can be developed and run target platforms using model driven engineering methods .
using the tri - affinity model driven method (TAMDM) com- The TAMDP further comprises build tooling for building
prises applications that are targeted to run on various server- application binaries for the server side and the target “ n ”
side platforms , for example , the tri - affinity model driven 40 clients , along with native platform .
platform (TAMDP) , Amazon Web Services (AWS®) plat- The tri - affinity model driven platform (TAMDP) imple
form as a service (PaaS) by Amazon Technologies , Inc. , ments a prototyping mechanism for testing the application in
Azure® PaaS by Microsoft Corporation , blockchain plat- a prototype mode using statically provided or randomly
forms , etc. , made available by vendors as a platform as a generated sample data and deploying and publishing an
service , hosted , on a cloud , and on - premise . The class of 45 application server and “ n ” clients on an instance of the
applications that can be developed and run using the TAMDP runtime and an application store of the TAMDP .
TAMDM further comprises applications that are targeted to The TAMDP further comprises an introspection tool for
run on various client - side platforms , for example , smart- performing an introspection of the application at various
phones with operating systems such as Android , iOS , etc. , stages within the TAMDP runtime infrastructure , on deploy
internee of things (IoT) platforms such as Arduino® , Rasp- 50 ment of the application within the TAMDP run time infra
berry® , etc. , interactive voice response systems (IVRSs) , structure . The TAMDP executes the generated application
voice operated personal assistants such as Alexa® of Ama- binary in an instance of a TAMDP runtime environment for
zon Technologies , Inc. , Google Assistant by Google LLC , N clients and a TAMDP server type of rendition . The
etc. , instant messengers such as the Facebook® messenger TAMDP further comprises runtime application management
of Facebook , Inc. , WhatsApp® of Whatsapp Inc. , Skype® 55 tools for managing the running application and recording an
of Microsoft Corporation , etc. , bots of , for example , audit log for actions performed by the end users and admin
Microsoft® , Facebook® , etc. The class of applications that istrators of the application . The TAMDP further comprises a
can be developed and run using the TAMDM further com- runtime analyzer and visualizer for analyzing the application
prises applications that store their data on various persistent during runtime of the application using the analysis affinity
data stores , for example , a relational database management 60 model and application usage data . The TAMDP further
system (RDBMS) , a NoSQL database , distributed ledgers , comprises a machine learning based recommendation
etc. , and a class of applications that connects to a variety of engine for enhancing the application using the analysis
data sources such as an enterprise resource planning (ERP) affinity model by generating machine learning based rec
software , a software as a service (SaaS) software , web ommendations . The TAMDP further comprises a TAMDP
application programming interfaces (APIs) , sensors , artifi- 65 runtime subsystem that performs multiple functions com
cial intelligence (AI) or machine learning (ML) based prising , for example , notification generation , synchroniza
engines , spreadsheets , etc. tion , authentication , authorization , analysis , licensing , ver

9

a

a
10

a 15

a

a

US 11,249,734 B2
7 8

sioning , application store publication , and name spacing . FIG . 3 exemplarily illustrates a schematic diagram of a
The TAMDP further comprises a pluggable domain logic predefined canonical meta - model used by the tri - affinity
runtime infrastructure for running the domain logic con- model driven platform for specifying an application ;
tained in the cross - platform application . FIG . 4 exemplarily illustrates a schematic diagram show

The tri - affinity model driven platform (TAMDP) allows 5 ing derivation of human affinity meta - models and analysis
for machine processable application specification that pro- affinity meta - models from predefined canonical meta - mod
vides multiple opportunities for generation , automation , els used by the tri - affinity model driven platform for ana
analysis , reuse , and enhancement of the cross - platform lyzing an application ;
application . The TAMDP provides an abstracted method for FIG . 5 exemplarily illustrates a schematic diagram show
designing and specifying the cross - platform application , ing interactions between the predefined meta - models , the
thereby obviating the need for skills in developing the analysis affinity and human affinity meta - models , and tri
cross - platform application on diverse target platforms . The affinity models in realizing an application using the tri
source code for the cross - platform application generated affinity model driven platform ;
from the machine affinity model using the model - to - source FIG . 6 exemplarily illustrates a schematic diagram show
code generator reduces costs and time required for the ing interactions between developers , administrators , and end
application development and enhancement , resulting in an users , and the tri - affinity models during development and
enhanced development process . Furthermore , the specifica- runtime of an application ;
tion of the application in the form of three models makes the FIG . 7 exemplarily illustrates a schematic diagram show
entire specification available to human users via various 20 ing a singular instance of the predefined meta - models and
inference mechanisms comprising visualizations , and to models per application in the tri - affinity model driven plat
machines , such that a user or a user agent can make optimal form ;
choices about the usage of the application as the application FIG . 8 exemplarily illustrates a schematic diagram of an
is no longer a black box . The metadata of the application application realized using a tri affinity model driven method
enables discovery and matching of the application with the 25 and deployed in the tri - affinity model driven platform ;
target platforms . FIGS . 9A - 9C exemplarily illustrate schematic diagrams

The cross - platform applications generated using the tri showing applications and topologies of different types that
affinity model driven platform (TAMDP) operate in both can be realized using the tri - affinity model driven method ;
offline and online modes . The cross platform applications FIG . 10 exemplarily illustrates a schematic diagram of the
source data from multiple data sources , for example , data- 30 tri - affinity model driven platform development subsystem of
bases , enterprise applications , cloud based applications , the tri - affinity model driven platform ;
sensors , and application programming interfaces (APIs) , etc. FIG . 11 exemplarily illustrates a schematic diagram of a

development time analyzer and visualizer and the runtime The cross - platform applications interact with human users in
a push mode where the human users request for information , 35 form for performing analyses of different types on the analyzer and visualizer in the tri - affinity model driven plat
and in a pull mode where the human users are sent infor realized application during development time and runtime mation based on an event . The cross - platform applications respectively ;
operate across multiple user agents , for example , humans , FIG . 12 exemplarily illustrates a schematic diagram of a
machines , and devices , across multiple form factors such as model - to - source code generator in the tri - affinity model
smart phones , desktop computers , tablet computers , 40 driven platform development subsystem for generating a
watches , etc. , and across multiple device platforms , for source code for an application of different rendering types on
example , the Android platform , the iOS platform , web supported client and server platforms ;
platforms , and automotive platforms . The cross - platform FIG . 13 exemplarily illustrates a schematic diagram of
applications interface with man users and machines via an build tooling in the tri - affinity model driven platform devel
information interface , for example , via screen based devices , 45 opment subsystem for generating an executable binary for
APIs , an interactive voice response system (IVRS) , a short an application of different rendering types on supported
message service (SMS) , etc. The cross - platform applications client and server platforms ;
generated using the TAMDP are used for business purposes , FIG . 14 exemplarily illustrates a schematic diagram
consumer purposes , and informational purposes . The cross- showing steps performed by the tri - affinity model driven
platform applications comprise third party APIs and web 50 platform development subsystem for prototyping an appli
services , for example , maps and payment interfaces and also cation during development time ;
use native device features , for example , a camera , location , FIG . 15 exemplarily illustrates a schematic diagram of the
Bluetooth® communication capability of Bluetooth Sig , tri - affinity model driven platform runtime subsystem of the
Inc. , near field communication (NFC) , etc. tri - affinity model driven platform ;

FIG . 16 exemplarily illustrates a schematic diagram
BRIEF DESCRIPTION OF THE DRAWINGS showing system applications and non - system applications

deployed on an instance of the tri - affinity model driven
The disclosure will be described and explained with platform runtime subsystem of the tri - affinity model driven

additional specificity and detail with the accompanying platform ;
figures in which : FIG . 17 exemplarily illustrates a schematic diagram

FIGS . 1A - 1C illustrate a method for authoring , realizing , showing data stores and services of different types to which
and analyzing a cross platform application using a tri - affinity an application built using the tri - affinity model driven plat
model driven platform ; form connects ;

FIG . 2 exemplarily illustrates a schematic diagram of the FIG . 18 exemplarily illustrates a schematic diagram
tri - affinity model driven platform comprising a tri - affinity 65 showing steps of introspection performed at various stages
model driven platform development subsystem and a tri- of usage of an application when the application is executed
affinity model driven platform runtime subsystem ; and run in the tri - affinity model driven platform ;

a

55

60
a

a

US 11,249,734 B2
9 10

FIG . 19 exemplarily illustrates a schematic diagram subsystem and a tri affinity model driven runtime subsystem
showing persistent stores of different types supported by a for developing , analyzing during development , prototyping
runtime logger of the tri - affinity model driven platform using sample data , introspecting , deploying , executing ,
runtime subsystem for managing an application ; and managing , recording usage of a cross platform application ,
FIG . 20 exemplarily illustrates a schematic diagram 5 analyzing , and enhancing the cross platform application post

showing analyses of different types performed by a runtime deployment .
analyzer and visualizer of the tri - affinity model driven Predefined canonical meta - models comprising multiple
platform runtime subsystem . attributes for describing and analyzing a cross - platform

Further , those skilled in the art will appreciate that ele- application comprehensively excluding domain logic are
ments in the figures are illustrated for simplicity and may not 10 provided as a part of the tri - affinity model driven platform
have nece cessarily been drawn to scale . Furthermore , in terms (TAMDP) . For developing the cross - platform application ,
of the construction of the device , one or more components the TAMDP excludes domain logic . For running the cross
of the device may have been represented in the figures by platform application , the TAMDP includes execution of the
conventional symbols , and the figures may show only those domain logic . The predefined canonical meta - models com
specific details that are pertinent to understanding the 15 prise , for example , an application (app) meta model for
embodiments of the present disclosure so as not to obscure specifying application wide aspects , a namespace meta
the figures with details that will be readily apparent to those model for specifying name spacing aspects , a configuration
skilled in the art having the benefit of the description herein . (config) meta - model for specifying configuration aspects , a

locale meta - model for specifying localization aspects , an
DETAILED DESCRIPTION 20 activity meta - model for specifying entry points and corre

sponding access control aspects , a service meta model for
For the purpose of promoting an understanding of the specifying service aspects , a data meta - model for specifying

principles of the disclosure , reference will now be made to data aspects , and a user interface metamodel for specifying
the embodiment illustrated in the figures and specific lan- user interface aspects as disclosed in the detailed description
guage will be used to describe them . It will nevertheless be 25 of FIG . 3. The app meta - model , the namespace meta - model ,
understood that no limitation of the scope of the disclosure the config metamodel , the locale meta - model , the activity
is thereby intended . Such alterations and further modifica- meta - model , the service meta model , the data meta - model ,
tions in the illustrated system , and such further applications and the user interface meta - model are comprehensive in
of the principles of the disclosure as would normally occur terms of aspects cross - platform application . The predefined
to those skilled in the art are to be construed as being within 30 canonical meta - models provide for entire application real
the scope of the present disclosure . ization excluding domain logic . The cross platform appli

The terms " comprises ” , “ comprising ” , or any other varia- cations realized by the predefined canonical meta - models
tions thereof , are intended to cover a non - exclusive inclu- are comprehensive in terms of features comprising , for
sion , such that a process or method that comprises a list of example , application (app) stores , application programming
steps does not include only those steps but may include other 35 interfaces , execution as a server application across plat
steps not expressly listed or inherent to such a process or forms , execution as a client application across platforms ,
method . Similarly , one or more devices or sub - systems or generation of notifications , authentication , authorization ,
elements or structures or components preceded by “ com- etc. The predefined canonical meta - models support multi
prises ... a ” does not , without more constraints , preclude the plicity of server renditions and client renditions of the
existence of other devices , sub - systems , elements , struc- 40 cross - platform application , for example , on smartphone
tures , components , additional devices , additional sub - sys- platforms such as Android , iOS , Windows® , etc. , internet
tems , additional elements , additional structures or additional of things (IoT) platforms such as Arduinox , Raspberry® ,
components . Appearances of the phrase " in an embodi- etc. , auto dashboards , etc.
ment ” , “ in another embodiment ” and similar language Corresponding to each of the predefined canonical meta
throughout this specification may , but not necessarily do , all 45 models , analysis affinity metamodels are derived from the
refer to the same embodiment . predefined canonical meta - models . The analysis affinity

Unless otherwise defined , all technical and scientific meta - models are one - time hand authored to correspond to
terms used herein have the same meaning as commonly the predefined canonical meta - models . An embodiment of
understood by those skilled in the art to which this disclosure the analysis affinity meta - model is an application ontology
belongs . The system , methods , and examples provided 50 comprising all the aspects of the predefined canonical meta
herein are only illustrative and not intended to be limiting . models . The multiple aspects , for example , user interface ,

In the following specification and the claims , reference data , service , activity , etc. , are modeled as distinct ontolo
will be made to a number of terms , which shall be defined gies . For a specific application , the data carried in the
to have the following meanings . The singular forms “ a ” , machine affinity model is transformed into a suitable form
“ an ” , and “ the ” include plural references unless the context 55 for performing an analysis such as subject - predicate - object
clearly dictates otherwise . constructs . In an embodiment of the analysis affinity model

FIGS . 1A - 1C illustrate a method for authoring , realizing , in semantic web technology , query technologies such as
and analyzing a cross platform application using a tri - affinity resource description framework (RDF) data query language
model driven platform (TAMDP) . The TAMDP has three (RDQL) , SPARQL protocol and RDF query language
affinities , namely , a human affinity intended for authoring by 60 (SPARQL) are used to codify pre - set queries as well as
a human ; a machine affinity intended for machine process- support ad - hoc querying by providing a query editor and an
ing ; and an analysis affinity intended for analysis . The execution method combined with a results pane . Corre
human affinity , the machine affinity and the analysis affinity sponding to each of the predefined canonical meta - models ,
are expressed through a human affinity model , a machine human affinity meta - models are derived from the predefined
affinity model , and an analysis affinity model respectively , 65 canonical meta - models . The human affinity meta - models are
with corresponding tooling and infrastructure of the one - time hand authored and designed as a domain specific
TAMDP comprising a tri - affinity model driven development language to correspond to the predefined canonical meta

.

a

a

?

US 11,249,734 B2
11 12

models . An embodiment of the human affinity meta - model tion specification . That is , the analysis affinity model is not
is A Language for Application (Alfa) comprising all the intended for authoring or editing of an application specifi
aspects of the predefined canonical meta - models . The cation . The analysis affinity model is suited for performing
machine affinity model is compliant with the predefined various analyses during development and / or runtime .
canonical meta - models . Similarly , the analysis affinity 5 The tri - affinity model driven development subsystem
model is compliant with the analysis meta - model . In an comprises a compiler , a translator , a model - to - model trans
embodiment , the human affinity model , the machine affinity former , a model - to - text transformer , a model - to - source code
model , and the analysis affinity model are separate and generator , build tooling , and a development time analyzer
distinct . In another embodiment , the machine affinity model and visualizer . The compiler compiles the human affinity
and the analysis affinity model are the same . In another 10 model , that is , the definition of the application in the Alfa
embodiment , the analysis affinity model is generated from domain specific language to a machine affinity model . The
the human affinity model . translator optionally translates a human affinity model to

The human affinity model has a transformation from and another human affinity model . The model - to - model trans
to a machine affinity model . A domain specific modeling former performs model - to - model transformation of the
language , such as Alfa , allows human application developers 15 machine affinity model to the analysis affinity model . The
to author the human affinity model for the application . A model - to - text transformer tool performs a model - to - text
domain specific modeling language , such as Alfa , is a human transformation of the machine affinity model to the human
entry point for creation and modification of a human affinity affinity model , that is , the source code in the Alfa domain
model of an application . A domain specific language , such as specific language . The model - to - source code generator
Alfa , is expressly designed with amenability for authoring a 20 receives the machine affinity model , that is , a platform
human affinity model using high abstraction human lan- independent model , as input and outputs a platform specific
guage like primitives for conversion to a human affinity model , that is , the platform specific source code . The model
model of an application . The human affinity model manifests to - source code generator generates source codes for a target
an application comprehensively , that is , all aspects , all specific server platform and a target specific client platform
rendering types , all platforms , and all features . A human uses 25 from the machine affinity model . The build tooling builds
a domain specific language , such as Alfa , which is a highly binary executables from the generated source codes for the
abstract and expressive human - like language to author the target specific server platform and the target specific client
human affinity model . A domain specific language , such as platform , which can subsequently be deployed and installed
Alfa , allows developers to author the applications once , and on target specific server runtime and client platforms . In an
have the applications rendered on any number of target 30 embodiment , the tri - affinity model driven platform
platforms . A human affinity model of an application is (TAMDP) subsystem compiles the human affinity model to
optionally translated to another human affinity model of the the machine affinity model , generates a platform specific
same application using a ranslation process , such as trans- source code from the machine affinity del , and builds a
lation of a human affinity model authored by a developer platform specific server binary and platform specific client
using a domain specific language , such as Alfa , in a specific 35 binaries from the platform specific source code . In another
vernacular spoken language , such as English , to another embodiment , the TAMDP subsystem compiles the human
human affinity model of the same application using a domain affinity model to a platform specific source code and builds
specific language , such as Alfa , in another vernacular spoken a platform specific server binary and platform specific client
language , such as German , using a translation process . binaries from the platform specific source code . In another

The machine affinity model allows a machine , or a 40 embodiment , the TAMDP subsystem directly compiles the
machine based software system to play the role of a gen- human affinity model to a platform specific server binary and
erator for realization of the application . The machine affinity platform specific client binaries . The TAMDP subsystem
model allows machine processing of the application speci- initiates the binary generation process after the source code
fication . The machine affinity model is also a third party generation process . The development time analyzer and
machine entry point for creation and modification of the 45 visualizer performs various development - time analyses
application specification . The outcome of application spe- using the analysis affinity model . The tri - affinity model
cific human affinity modeling is input to an automated driven runtime subsystem comprises a runtime analyzer and
transformation that outputs the machine affinity model . The visualizer for performing various runtime analyses using the
machine affinity model is an application specific instance of analysis affinity model , and a runtime logger for collecting
a meta - model . In an embodiment , the machine affinity 50 runtime operational data for performing various runtime
model is considered a platform independent model . The analyses using the analysis affinity model . The TAMP run
machine affinity model is suited for processing by a time subsystem further comprises a machine learning based
machine . The processing involves operations comprising , recommendation engine for generating machine learning
for example , parsing , code generation , model transforma- based recommendations for application enhancement .
tions , etc. The machine affinity model drives the application 55 In the method disclosed herein as exemplarily illustrated
realization following model driven engineering principles . in FIGS . 1A - 1C , the tri affinity model driven platform
An automated transformation of the machine affinity (TAMDP) provides 101 predefined canonical meta models

model outputs the analysis affinity model . The analysis with descriptive attributes . The tri - affinity model driven
affinity model allows application owners and managers to platform (TAMDP) also derives 102 , 103 one or more
play the role of an analyst of the application during devel- 60 non - canonical meta - models for human affinity and one or
opment and runtime phases of the application . The analysis more non - canonical meta - models for analysis affinity from
affinity model enables development and runtime analysis of predefined canonical meta - models . The tri - affinity model
the application . The analysis affinity model is expressly driven platform (TAMDP) also creates 104 an instance of an
designed for analysis with intent to introspect and improve application model for a specific application by setting values
the application during development and runtime phases of 65 of descriptive attributes of the predefined canonical meta
the application . By design , the analysis affinity model is not models using multiple modes of input , for example , as a
an entry point for creation and modification of the applica- human affinity model using a domain specific language , such

a

a

a

a

US 11,249,734 B2
13 14

as Alfa or as a machine affinity model created using external sensitivity parameters using a third method disclosed below .
facilities . In an embodiment , the TAMDP receives input The cloud compiler transfers the generated target platform
values of the descriptive attributes in a human affinity mode source code over the network to the development CLI on the
to create an instance of the human affinity model using the developer workstation . The developer then uses the devel
Alfa domain specific language . The Alfa domain specific 5 opment native compiler to generate a target platform binary
language is an external domain specific textual modeling by providing the target platform source code as input . language , and not a general programming language . The In the first method , a target platform source code genera application developer hand authors the application using the tor system operates in two source code generator modes Alfa domain specific language as a source code text file on comprising an obfuscated output mode and a non - obfuscated a file system . The compiler then compiles the source textual 10 output mode . In the obfuscated output mode , source code model , that is , the source code text in the Alfa domain elements , for example , screen identifiers , variable identifi specific language to a machine affinity model that is an ers , subroutine or component identifiers , application pro instance of the predefined application meta - model with the
values of the descriptive attributes . The human affinity gramming interface (API) identifiers , user interface element
model , that is , the source code text in Alfa , in a specific is identifiers , etc. , are generated as “ ID ” prefix along with a
vernacular spoken language , such as English , is optionally suffix computed from a hash of the associated identifier with
translated to another human affinity model , that is , source the intent to inhibit disallowed use of the generated target
code text in another vernacular spoken language , such as platform source code . In the second method , changes to the
German , using a translation process . Alfa source program with the intent to qualify and quantify
In an embodiment , the tri - affinity model driven platform 20 the Alfa source program as representing a known application

(TAMP) provides a combined compiler and model - to - source or a distinct application are detected . An enumeration of
code generator that is made accessible as a compiler - cum- detection parameters is provided along with properties stat
generator system on a cloud system , and offers facilities to ing whether an associated parameter is necessary and / or
compile a source program in the Alfa domain specific sufficient to qualify a change in this parameter as indicating
language , herein referred to as an “ Alfa source program ” , 25 a known application or a distinct application . A change in the
and output a source code that can be rendered on a generated Alfa source program is a deviation of a program source code
target platform , for example , a target client platform and a element from its previous form as contained in a previous
target server platform . The TAMDP , in this embodiment , submission of the Alfa source program . A set of detection
comprises a system for controlled generation of a target parameters is provided below :
platform source code , a method for qualifying and quanti- 30 (a) Application (app) specification parameters
fying changes to the Alfa source program , and a method for (b) User interface (UI) specification parameters
operation based on selectable and / or changeable sensitivity (c) Data specification parameters
parameters . In this embo the components of the (d) Config specification parameters
TAMDP comprise , for example , a developer workstation (e) Locale specification parameters
based editor tool such as a developer workstation , a cloud 35 (f) Service specification parameters
based common compiler tool for shared usage with concur- (g) Activity specification parameters
rent usage , a cloud compiler - developer - workstation based (h) Namespace specification parameters
command line interface (CLI) tool such as a development An algorithm executed by at least one processor of the
CLI , and a developer - workstation based native platform compiler - cum - generator system is disclosed below :
compiler tool such as a development native compiler . In this 40 given for each parameter
embodiment , the TAMDP enables various service configu- enumeration of non - identifier things ”
rations that allow a per developer limit of “ n ” applications qualify the change (if any)
(apps) in a given period , allow a per organization limit of “ n ” compute “ change hash ” of each parameter
apps in a given period , where the organization has any hash of most everything (“ non - identifier things ”)
number of developers , provide an ability to not retain the 45 except identifier " change hash ” accumulated as
Alfa source program but still inform of malicious activity key = value attribute in source / source - attachment
intended to breach set usage limits in the present and in the ADDITIVE change indicated by
past , and provide an ability to share an evidence of detection " change hash ” absent in source attachment
of the malicious activity intended to breach set of allow corresponding item present in source

SUBTRACTIVE change indicated by
The method steps for usage of the compiler - cum - genera " change hash ” present in source attachment

tor system on the cloud system comprise the following . The corresponding item absent in source
developer uses the development workstation to author the EDITIVE change indicated by
Alfa source program . The developer uses the development “ change hash ” present in source attachment
command line interface (CLI) to submit the authored Alfa 55 corresponding item present in program source
source program to a cloud compiler over a network . The " change hash ” NOT equal to “ computed change
development CLI generates a compilation request , encrypts hash ”
and / or signs the Alfa source program , and transmits the store (accumulative) hash , identifier
encrypted and / or signed Alfa source program to the cloud store in a blockchain in one embodiment
compiler over the network . The cloud compiler decrypts 60 store embedded in program source (maybe as program
and / or verifies the received Alfa source program , compiles source attachment) preamble - initiated - by - system
the submitted Alfa source program , generates the target In the third method , an operation is performed based on
platform source code with a controlled generation of the configurable sensitivity to the change of parameters . The
target platform source code using a first method disclosed third method is employed when a determination is to be
below , and qualifies and quantifies changes to the Alfa 65 made whether an operation can be performed on behalf of a
source program using a second method disclosed below and human developer or other system developer based on allow
operation performance based on selectable or changeable ances afforded to the developer and available for retrieval

a

ances . 50

5 user

15

20

25

30

a

US 11,249,734 B2
15 16

from a storage system . An algorithm executed by at least one < function > (< attributed = < value >
processor of the compiler - cum - generator system is disclosed The attribute clause allows extensibility without the need
below : to modify grammar of the Alfa domain specific lan

if developer , fetch compile allowances from store guage . The grammar or definition of the Alfa domain
allowances could be language allows extensibility at a site of use of
enumeration of target frontends interface element as disclosed below .
count of target frontends EditText named UNM ;
backend During generation of the application model , the user
etc. interface (UI) element is tagged as a variant element . The number of allowed distinct apps (ALLOWED - APPS- 10 tagging of the UI element results in the generation of a COUNT) particular rendition of the UI element “ EditText " during example generation of the source codes . Furthermore , in the source 3 (distinct apps) code text in the Alfa domain specific language , at the site of active subscription unit period (ACTIVE - SUBSCRIP use , a UI element is authored , for example , as disclosed TION) below . example EditText variant = 2 named UNM ; 1 month (current month) The generation of the user interface (UI) element variant number of consumed allowed distinct apps in active for a target platform during generation of the application subscription unit period (CONSUMED - APPS model comprises authoring the UI element in the Alfa COUNT) domain specific language as < platform > (variant) = X . During example generation of the application model , the UI element is 1 (distinct apps) tagged as a variant 2 UI element . The tagging of the UI list of consumed BASE URLs up to now in unit period element results in the generation of another rendition of the (CONSUMEDBASE - URLS - LIST) UI element “ EditText " during generation of the source example codes . The grammar or definition of the Alfa domain specific www.acme.com/app4servicecenter language allows , at a site of use , a UI element authored , for www.acme.com/app4workshop example , as . www.acme.com/app4repair Edit Text android (variant) = 3 web (variant) = 2 named UNK if organization - developer , fetch compile allowances from During generation of the application model , the user store (inherited from organization allowances) interface (UI) element is tagged as a variant 3 UI element for number of allowed distinct apps (ALLOWED - APPS Android® usage and a variant 2 UI element for web usage . COUNT) The tagging of the UI element results in the generation of example specific renditions of the UI element “ Edit Text ” during 3 (distinct apps) generation of the source codes per platform . One of the UI active subscription unit period (ACTIVE - SUBSCRIP- 35 elements available to use when designing a page of the TION) application is a “ Data Determined Multilayout ” , hereafter example referred to as “ multilayout ” . Similar to other dynamically 1 month (current month) fetched data rendering UI elements , the multilayout UI number of consumed allowed distinct apps in active element supports an optional " data ” clause to specify a subscription unit period (CONSUMED - APPS- 40 backend application programming interface (API) to target COUNT) when data is to be fetched . The API returns data in the form example of a model defined in a “ model ” clause . In the following 1 (distinct apps) example , the model is an “ array of RatingItemDTO (S) ” . A list of consumed BASE URLs up to now in unit period “ determinant " clause is used to specify an attribute in the CONSUMED - BASE - URLS - LIST) model , for example , “ Rating Status ” , whose value is to be example compared with values enumerated in a “ fragment refs ” www.acme.com/app4servicecenter clause . If a matching value for the attribute of the model is www.acme.com/app4workshop found in the “ fragment refs ” clause , the UI layout corre www.acme.com/app_repair sponding to the matched value is used to render that row of quantify qualified changes data . That is , each row of data returned by the API carries an if quantity of qualified changes is permitted (based on attribute whose value is used to select the UI layout to use algorithm , heuristics) , signal approval for perfor to render that particular row of data . Any number of UI mance of the operation layouts can be specified , an example of which is disclosed if quantity of qualified changes is not permitted (based below . on algorithm , heuristics) , signal denial for perfor- 55
mance of the operation

In an embodiment , the descriptive attributes in the multilayout
machine affinity model allow for an extensibility of the determinant RatingStatus
instance of the application model to different target plat fragment refs

“ Rated " : JobCardRated Item , forms . The extensibility mechanism comprises a key or a 60 “ Unrater ” : JobCardUnrated Item key - value pair that influences behaviour for any widget , model RatingItemDTO []
data , service , or application aspect . The grammar or defini data ListJobCardRatingsService
tion of the Alfa domain specific language provides an named NIL_CustomerJobCards Ratings ; attribute clause of zero , one , or any combination of the
following forms .

< attribute In an embodiment , the Alfa domain specific language
< attribute > = value > allows creation of a specialization of the multilayout user

45
2

50

filtered

65

5

US 11,249,734 B2
17 18

interface (UI) element . The multilayout UI element allows ing , content , etc. , is statically provided to the tri - affinity
for alternating the UI layout for odd and even positioned model driven platform (TAMDP) as disclosed in the fol
rows of data returned by the data application programming lowing example .
interface (API) . badge = " [New topleft triangle OxFF0000AA] ” ;

In an embodiment , the data corresponding , for example ,
to positioning , content , etc. , is supplied via binding of data

multilayout returned by an application programming interface (API) .
determinant zebra Using the Alfa domain specific language specific to the user fragment refs

" even " : CategoryItemEven , interface (UI) elements and the APIs , the tri - affinity model
" odd ” : CategoryItemOdd 10 driven platform JAMDP) implements a generic chat facility

model CategoryMasterDTO [] as a collection of graphical user interface (GUI) pages and
data ListAllCategoryService a set of APIs . The chat facility may be placed into any
filtered
named ML_ViewCategory Master ; application developed by the TAMDP . APIs selected by an

application developer can be surfaced for invocation during
15 a chat session . The chat session includes other human

In an embodiment , the Alfa domain specific language participants , resulting in a group chat in which one of the
allows creation of another specialization of the multilayout participants would be the application responding to chat
user interface (UI) element . The multilayout UI element message - based API invocations such as the following .
allows for presenting multiple data rows in which grouped
data rows are collapsed and can be expanded to reveal child 20
data rows in that group . A UI layout for a parent data row and locale {

“ en ” default { individual UI layouts for child data rows are specified as strings {
disclosed below .

25

30

35

command_ListAllCustomersService : “ list
multilayout customers " ;

determinant expandable
fragment refs

" parent " : JobCardNoteItemParent , }
“ Pickup Initiated ” : JobCardNoteItemChildPickupInitiated , }
“ Pickup Aborted ” : JobCardNoteItemChildPickup Aborted , }
“ Pickup Handover " : JobCardNoteItemChildPickupDone , process ListAllCustomersService
" Pickup Received ” : JobCardNoteItemChildPickup Received ,

model JobCardNoteItemDTO [] data jobCardNoteItemExpandableService chat (command) = command_ListAllCustomersService
filtered
named ML5 ; In the above example , the application programming inter

face (API) “ ListAllCustomersService ” is invoked by a
The Alfa domain specific language allows menu specifi- human participant during a chat session by typing a word

cations to be abstracted to basic interface elements compris sequence “ list customers ” . During a chat - based API invo
ing , for example , menu items , labels for menu items , icons cation , parameter passing , and form data entry are feasible .
for menu items , etc. The abstraction allows use or reuse of 40 Notifications are asynchronous one - way messages sent by
menus specified in a common or singular method at all an application server - side . In an embodiment , in the Alfa receptive positions , for example , a graphical user interface domain specific language , APIs chosen by the application
(GUI) rendition such as a side drawer , a springboard , an developer generate notifications . Notifications are sent using
action bar , an interactive voice response system (IVRS) different modes comprising , for example , a short message
rendition , etc. 45 service (SMS) , an electronic mail (email) , a device push

notification , a voice call , third party messaging applications
such as WhatsApp® of WhatsApp Inc. Only for the device menu GlobalOptions Menu {

Home label home icon icon_home ; push notification mode , a feature of “ inbox ” is supported . An
Inbox label label_inbox icon icon_inbox ; inbox is a store of received device push notifications .
Drafts label label_drafts icon icon_drafts ; 50 Notifications are directed to specific named inboxes . In the
About label label_about icon icon_about ; Alfa domain specific language , user interface (UI) pages can SignOut label signout icon icon_logout : be created and designated as “ inbox ” pages , allowing unread } and read notifications to be shown on these pages , for

example , as disclosed below .
In compliance with user interface (UI) design aesthetics 55

and user experience design on some platforms , some UI
elements are represented as instances of other agreeable UI page ServiceRequestNotificationInbox inbox {
elements . For example , when an application is targeted for
the iOS , if there is a page that has a top level tab navigation
as well as a side drawer navigation , the side drawer is 60
removed on the fly and the menu items in the side drawer are Complex user interface (UI) elements that render multiple
subsumed under the top level tab menu . rows of data support a filter feature . If a “ filtered ” attribute

User interface (UI) elements , for example , non - form- is specified in the use of the UI element , the UI includes a
control UI elements display tag like information overlaid on technique for an end user to enter text that is used to filter
the UI element . In an embodiment , the position of the tag 65 rows shown in the UI element . If the “ filtered ” attribute is
like information is specified along with the content to be specified along with a list of attributes present in the data
displayed . The data corresponding , for example , to position- model specified in the UI element , in the use of the UI

a

US 11,249,734 B2
19 20

element , the UI implements a method to allow the end user create an instance of the machine affinity model . The
to enter text that is used to filter rows based on specified data TAMDP receives input values of the attributes , for example ,
model attributes only . Complex UI elements that render via a visual editor or a voice user interface , or a chat hot , or
multiple rows of data also support an endless scroll feature a what - you - see - is - what - you - get (WYSIWYG) authoring
for fetching subsequent rows of data beyond those that are 5 tool , or a multi - mode interactive authoring tool in a machine
currently visible . To enable the endless scroll feature , the affinity mode to create an instance of the machine affinity
application programming interface (API) for data fetch model . A chat bot provides a chat - based interface for build
specified in the UI element must include a parameter named ing applications . The chat bot is deployed with an additional
“ page ” as disclosed below . feature that allows message exchanges using voice in addi

10 tion to or in lieu of typed chat messages . The application
developer interacts with the chat hot over multiple chat

process LastViewedCustomersService sessions to build an application . The chat bot assisted
creation of the application is depicted in one or more side

endpoint “ / customers / lastviewed ? page = { page } ” panels on a graphical user interface (GUI) of the TAMDP .
15 The creation of the application is performed on the fly via

the Alfa domain specific language generated by the chat bot
or by running a WYSIWYG rendition of the application

The application programming interface (API) implemen generated by the chat hot . The interaction with the chat bot
tation must provide paginated results given the “ page ” is in a question and answer (Q & A) format , wherein
parameter . The user interface (UI) element works in tandem 20 questions are initiated by the chat hot and answered by a
with the API to present the endless scroll feature without human application developer , for example , as disclosed in
further intervention by the application developer . Further- the following sequence .
more , the tri - affinity model driven platform (TAMDP) also ChatBot » What is the name of your App ?
generates complex UI elements , for example , a shopping Human App Dev » Shopping App
cart element using the Alfa domain specific language . The 25 ChatBot » Do you want to add a page ?
Alfa domain specific language allows for synthesis of com- Human App Dev » Yes
plex widgets , for example , a shopping cart . An algorithm ChatBot » What do you want to name the page ?
executed by at least one processor of the tri - affinity model Human App Dev » Signin
driven platform (TAMDP) for synthesizing complex wid- ChatBot » Do you want to add an API ?
gets , for example , complex UI elements is disclosed below : 30 Human App Dev » No

(1) Given that a specific target client platform provides ChatBot » Do you want to add a data entity ?
“ n ” user interface (UI) elements , Human App Dev » No

(2) The Alfa domain specific language provides a choice In an embodiment , the interaction is in an instructional
of n + m UI elements to the application developer . format as disclosed below , wherein the human application

(3) The “ m ” UI elements would typically be complex and 35 developer issues a sequence of instructions to build a page ,
highly abstracted (for example , a “ shopping cart ”) and or a data entry , or an application programming interface
to realize the “ m ” UI elements would require a com- (API) , etc.
position of multiple simple UI elements . Human App Dev » Let me instruct you about the Signin

(4) As the “ m ” UI elements do not exist in the underlying page
target client platform , during compilation , UI elements 40 ChatBot >> Ok
from the set “ n ” are synthesized in an appropriate Human App Dev » Add a Button UI element
composition in lieu of the corresponding “ m ” UI ele- Human App Dev » Add two Label UI elements
ments . Human App Dev » When the Button is clicked , Segue to

In an embodiment , the attributes in the machine affinity page named Main
model allow specification of an application (app) store to 45 In an embodiment , to create an instance of the machine
privately or publicly publish the generated application . In an affinity model , the tri - affinity . model driven platform (TA
embodiment , the application developer authors , in the Alfa NIDP) receives partial input values of the attributes from
application source program , the app stores provided by the external low or high - fidelity screen diagrams , and an exter
tri - affinity model driven platform (TAMDP) runtime infra- nal textual representation of an application , for example , an
structure in which the generated application must be hosted , 50 extensible markup language (XML) file .
by reciting whether to privately or publicly publish the The tri - affinity model driven platform (TAMDP) compiles
generated application in the app store . In an embodiment , or transforms 105 the created instance of the application
the attributes in the machine affinity model allow synthesis model to achieve the three affinity models , that is , the human
of complex widgets while creating an instance of the appli- affinity model , the machine affinity model , and the analysis
cation model . The widgets comprise items , for example , a 55 affinity model , required for application development and
data determined multi - layout element with zebra , expand- deployment . The compiler compiles the application model
able features , variants of the multi - layout element , a menu created in the human affinity mode with the Alfa domain
element , a tab menu element , a chat user interface element , specific language to a corresponding instance of the machine
a topical inbox element , a shopping cart element , pagination affinity model . The compiler that is configured as a model
such as an endless scroll , a filter - all attribute , a filter- 60 generator , uses a model - to - model transformation to convert
selective attribute , a drafts attribute , a badging attribute , the application authored as an Alfa source program to the
responsive layouting using condition expressions , widget machine affinity model compliant with one or more of the
variants and platform - specific rendition variants that morph predefined canonical meta - models , for example , the eight
into a specific rendition based on the target platform . meta - models comprising the application (app) meta - model ,

In an embodiment , the tri - affinity model driven platform 65 the namespace meta - model , the configuration (config) meta
(TAMDP) receives input values of the attributes in a model , the locale meta - model , the activity meta - model , the
machine affinity mode , that is , from external facilities to service meta - model , the data meta - model , and the user

a

a

US 11,249,734 B2
21 22

interface meta - model . The compiler performs syntax check- (4) For each page in Set (B) recursively collect pages that
ing followed by an elaborate reference checking to pre - empt are targets of outgoing segues for each role . This results
errors in downstream native builds and outputs persistent in a set of activities by role . The first activity in the
textual representations of application models of various activities is the entry point page to the activity .
aspects of the application that are compliant with the various 5 (5) This derived activity information is used for analysis
aspect - specific predefined canonical meta - models . The com and visualizations about business activity flow and
piler possesses a tinting capability , that is , provides warnings usage .
and suggestions about applicability of statements and (6) Present the collected data .
clauses in the Alfa domain specific language to the target An algorithm defined in the development time analyzer
platform of the generated application , for example , an 10 and visualizer and executed by at least one processor of the
Android smartphone platform , the Arduino® internet of tri - affinity model driven platform (TAMDP) for visualizing
things (IoT) platform , etc. The model - to - model transformer navigation paths across pages of the application is disclosed
transforms the machine affinity model of the application to below .
the analysis affinity model . (1) Start with the page named “ Main ” .

The tri - affinity model driven platform also authors 106 15 (2) Determine all outgoing segues from the Main page
one or more human affinity models using one or more noting the destination page .
domain specific languages and translating between a plural- (3) Plot the source page and destination page with a
ity of human affinity models . The tri - affinity model driven connecting arc .
platform (TAMDP) allows bidirectional editing of a created (4) Recursively repeat step 2 and 3 for every destination
instance of the application model coded in the Alfa domain 20 page found in step 2 .
specific language , if the created application model is edited (5) Present the collected data .
or created , for example , through a what - you - see - is - what- An algorithm defined in the development time analyzer
you - get (WYSIWYG) authoring tool , chat bots , a voice user and visualizer and executed by at least one processor of the
interface (VUI) , external low or high fidelity screen dia- tri - affinity model driven platform (TAMDP) for visualizing
grams , etc. The TAMDP allows round - tripping between the 25 navigation paths across pages by role is disclosed below .
human affinity model coded in the Alfa domain specific (1) Enumerate all roles in the application .
language and the machine affinity model , if the machine (2) For each role , perform the next steps .
affinity model is edited or created through multiple modes , (3) Start with the page named “ Main ” .
for example , the WYSIWYG authoring tool , a multi - mode (4) Determine all outgoing segues for role in hand from
interactive authoring tool , chat bots , an interactive voice 30 the Main page noting the destination page .
response system (IVRS) , external low and / or high fidelity (5) Plot the source page and destination page with a
screen diagrams , and an external textual representation such connecting arc .
as an extensible markup language (XML) representation of (6) Recursively repeat step 4 and 5 for every destination
the application . The roundtripping between the human affin page found in step 4 .
ity model and the machine affinity model allows the TAMDP 35 (7) Present the collected data .
to use different editors to edit the machine affinity model and An algorithm defined in the development time analyzer
maintain the human affinity model and the analysis affinity and visualizer and executed by at least one processor of the
model in sync . The TAMDP therefore supports the genera- tri - affinity model driven platform (TAMDP) for visualizing
tion of the human affinity model from the machine affinity usage of a particular user interface (UI) element type across
model , and the generation of the machine affinity model 40 the application is disclosed below .
from the human affinity model . (1) Enumerate all pages in the application .
The development time analyzer and visualizer analyzes (2) For each page , perform the next steps .

and visualizes 107 the application under development using (3) For the parts of the page , collect usage instances of the
the analysis affinity model . The development time analyzer given UI element .
and visualizer acting on the analysis affinity model during 45 (4) Present the collected data .
the development of the application analyzes and visualizes An algorithm defined in the development time analyzer
navigation paths across the application being generated by and visualizer and executed by at least one processor of the
role , usage of a particular user interface element across the tri - affinity model driven platform (TAMDP) for visualizing
application , usage of a particular service across application , usage of a particular service across the application is dis
inboxes in the application , pages in the application , data 50 closed below .
collection forms in the application , services in the applica- (1) Enumerate all services in the application .
tion , device native features used in the application along (2) Iterate all services , noting the service if match is found
with information on the user permissions required to operate and service is to enabled for notification or synchroni
the device native features , data entities , and the sources of zation .
the data entities in the application . The development time 55 (3) Enumerate all pages in the application .
analyzer and visualizer warns and provides applicability of (4) For each page , perform the next steps ,
the attributes in the machine affinity mode to the target (5) For the parts and constraints of the page , note usage
platform of the generated application . The development time of service if match is found .
analyzer and visualizer determines business activities . An (6) Present the noted data .
algorithm defined in the development time analyzer and 60 An algorithm defined in the development time analyzer
visualizer and executed by at least one processor of the and visualizer and executed by at least one processor of the
tri - affinity model driven platform (TAMDP) for determina- tri - affinity model driven platform (TAMDP) for visualizing
tion of the business activities is disclosed below . the inbox pages in the application is disclosed below .

(1) Enumerate all the pages in the application Set (A) (1) Enumerate all pages in the application .
(2) Enumerate all the roles in the application — Set (R) (2) For each page , perform the next steps .
(3) Iterate Set (A) , filtering all the pages that have an (3) If the page contains “ inbox ” attribute , make note of it .

incoming segue from the main pageSet (B) (4) Present the noted data .

65

5

15

a

US 11,249,734 B2
23 24

An algorithm defined in the development time analyzer side of a third party application only . The TAMDP generates
and visualizer and executed by at least one processor of the one or more platform specific source codes using the model
tri - affinity model driven platform (TAMDP) for visualizing to - source code generator based on model driven engineering
the pages in the application is disclosed below . methods .

(1) Enumerate all pages in the application . The tri - affinity model driven platform (TAMDP) gener
(2) For each page , perform the next step . ates a source code for the server side of the application for
(3) Make note of it . rendering on servers of different types comprising , for
(4) Present the noted data . example , a single instance hosted application server side , a An algorithm defined in the development time analyzer

and visualizer and executed by at least one processor of the 10 the Salesforce® App Cloud of salesforce.com , Inc. , a mobile
platform as a service (PaaS) application server side such as

tri - affinity model driven platform (TAMDP) for visualizing
the data collection forms in the application is disclosed backend as a service (mBaaS) application server side such as

Microsoft Azure® of Microsoft Corporation , a serverless below .
(1) Enumerate all pages in the application . application server side such as AWS® Lambda of Amazon
(2) For each page , perform the next steps . Technologies , Inc. The TAMDP generates a source code for
(3) For the parts of the page , collect usage instances of the client side of the application for rendering on clients of
form user interface (UI) element different types comprising , for example , Android phones ,

(4) Present the collected data . iOS phones , Android devices , iOS devices , desktop web
An algorithm defined in the development time analyzer browsers , mobile web browsers , automobile dashboards ,

and visualizer and executed by at least one processor of the 20 smart watches , smart devices , internet of things (IoT) -device
tri - affinity model driven platform (TAMDP) for visualizing hosted clients , voice user interfaces of interactive voice
the services in the application is disclosed below . response systems , Braille input and output user interfaces ,

(1) Enumerate all services in the application . etc.
(2) For each service , perform the next step . An application developer specifies a “ backend ” clause in
(3) Make note of it . 25 the “ app ” sentence for the server - side rendition in the
(4) Present the noted data . application specification . In the absence of the “ backend ”
An algorithm defined in the development time analyzer clause , the generation of application server - side defaults to

and visualizer and executed by at least one processor of the the tri - affinity model driven platform (TAMDP) . In an
tri - affinity model driven platform (TAMDP) for visualizing embodiment , the “ backend ” clause is used to specify any of
the device native features used in the application along with 30 a preset list of supported third party backends . The appli
information on the user permissions required to operate the cation developer also specifies a “ frontend ” clause in the
device native features is disclosed below . " app " sentence for the client - side rendition in the application

(1) Enumerate all pages in the application . specification .
(2) For each page , perform the next steps . An algorithm defined in the model - to - source - code gen
(3) Make a note of call components that integrate with a 35 erator and executed by at least one processor of the tri

device native feature . affinity model driven platform (TAMDP) for extending the
(4) Make a note of user interface (UI) elements that same application for different rendering types and different

integrate with the device native feature . form factors of the graphical user interface (GUI) is dis
(5) Present the noted data . closed below .
An algorithm defined in the development time analyzer 40 (1) Enumerate all pages in the application .

and visualizer and executed by at least one processor of the (2) For each page , perform the following .
tri - affinity model driven platform (TAMDP) for visualizing (3) Enumerate user interface (UI) elements having prop
the data entities and their sources in the application is erties that are mutable conditionally .
disclosed below , (4) Evaluate condition elements filtering out those not

(1) Enumerate all data entities in the application . matching with conditions influenced by environmental
(2) For each data entity , perform the next step . factors such as screen size , device form factor , time ,
(3) Collect information about source System - of - Record date , and geo - position .

(SOR) (if any) . Make note of it . (5) Generate conditional code to evaluate the condition at
(4) Present the noted data . runtime to perform determination based on prevalent
With the development time analyzer and visualizer , appli- 50 environmental factors . The determination may result in

cation authors and domain users can interact with the design mutation of properties such as " visibility ” , “ height ” ,
of the application , navigation paths across the application , " width " , etc.
access controls , the usage of data elements , and application The model - to - source code generator generates an auto
programming interface (API) use , and determine the close- badging code for generating a platform specific source code
ness of the application design to their requirement from the 55 for rendering on clients of different types using the machine
application , and fine tune the application model to suit their affinity model . An algorithm defined in the model - to - source
requirement completely . code generator and executed by at least one processor of the

The tri - affinity model driven platform (TAMDP) gener- tri - affinity model driven platform (TAMDP) for generating
ates 108 a source code of the application for a targeted the auto - badging code is disclosed below .
platform , for example , a targeted server platform or a 60 (1) Enumerate all pages in application .
targeted client platform , to be rendered as one of many (2) Filter pages by those having an “ inbox ” attribute .
rendering types using the created or compiled instance of the (3) For each page , perform the following steps .
machine affinity model . The rendering types comprise , for (4) Determine an outgoing segue (if any) that navigate to
example , a client side of the application only , a client side of a page designated as an “ inbox ” page .
N applications and a server side of one application , a server 65 (5) Determine an event corresponding to the segue action .
side of one application only , a client side of N applications (6) Determine the user interface (UI) element correspond
with a server side of a third party application , and a server ing to the event .

45

app track

US 11,249,734 B2
25 26

(7) Generate auto - badging for inboxes code so that a app collects your credit card information if you wish to
count of unread messages in the inbox is reflected in an store the credit card details . You may choose to opt - out
automatically applied badge on all menu options that and not store the credit card information .
navigate to the particular inbox page . Human User » Does this app have images ?

The tri - affinity model driven platform (TAMDP) gener- 5 Introspection ChatBot » This app has images on its landing
ates a platform specific server source code and one or many page and its sidebar , the min navigation interface . It has
platform specific client source codes corresponding to the icons at other places .
machine affinity model of the application . The TAMDP Human User » What is the size of the App ?
builds the platform specific server source code and the Introspection ChatBot » 60 MB for Android , 80 MB for
platform specific client source code of the application into a 10 iOS
platform specific server binary and platform specific client As an example , at the post - install stage of the application
binaries respectively , using the build tooling provided by the on a client device , the human user interacts with the intro
TAMDP development subsystem and the build tooling pro- spection chat hot as disclosed below .
vided by specific native platforms , for example , Android , Human User » What features of my device does this App
iOS , etc. In an embodiment , the TAMDP generates a plat- 15 use ?
form specific server source code of the application using the Introspection ChatBot » This app allows you to take pic
machine affinity model of one of the many server rendering tures from your device based camera and send them as
types prior to generating the binary code . In another embodi- a part of a service request . You can choose to attach
ment , the TAMDP generates a platform specific client source pictures from your gallery .
code of the application using the machine affinity model of 20 Human User » Does this my location ?
one or more of the many client rendering types prior to Introspection ChatBot » This app tracks your location for
generating the binary code . The TAMDP generates a plat- service delivery purposes .
form specific server binary code of the application using the Human User » > Which features do not work for me ?
platform specific server source of one of the many server Introspection ChatBot » As your phone does not have a
rendering types . In another embodiment , the TAMDP gen- 25 GPS , the map feature which directs you to the nearest
erates one or many platform specific client binary codes of service center , will not work .
the application using the platform specific client source of Human User » Does this app work offline ?
one or many of the server rendering types . Introspection ChatBot » You have chosen to not allow

The tri - affinity model driven platform (TAMDP) receives access to your device data store . This app will not work
statically provided sample data or randomly generated 30 offline for you . If you wish it to work , you can grant
sample data from an application developer and runs the access to your device data store , and it will work .
application in a prototype mode . The TAMDP tests 109 the Human User » Does this app have access to my images ?
application in a prototype mode with the statically provided Introspection ChatBot » Yes . This app has been provided
sample data or the randomly generated sample data . The access to the images stored in the gallery .
application developer triggers the TAMDP to run the gen- 35 As another example , at the post - install stage and the
erated application as a prototype with sample data , either as post - login stage , the human user interacts with the intro
a set of static values or as a set of randomly generated values spection chat bot as disclosed below .
in a “ data ” clause of the respective user interface (UI) Human User » > What is my role ?
element . The application developer shares the prototype Introspection ChatBot » You have the role of a registered
application with an intended user audience to obtain vali- 40 customer .
dation and feedback prior to deploying the application into Human User » Does this app have access to my images ?
production . The application developer deploys 110 the Introspection ChatBot » Yes . This app has been provided
application in an instance of the TAMDP runtime environ- access to the images stored in the gallery .
ment and publishes the application in a TAMDP application Human User » How many times have I used the service
store . request submit in the past ?
An introspection chat bot provided on a user interface , for Introspection ChatBot » You have submitted the service

example , a site of the tri - affinity model driven platform request form 5 times from the date of installation .
(TAMDP) application store introspects the application in a Human User » When was the first service request created ?
TAMDP server type of rendition for suitability and appli- Introspection ChatBot » The first service request form was
cability of the application for usage by users . The introspec- 50 submitted on 15 Aug. 2017 .
tion chat hot answers questions asked by a human user at a The tri - affinity model driven platform (TAMDP) executes
pre - install stage , a post - install stage , a pre - login stage , and 111 the generated application binary in an instance of the
a post - login stage . As an example , at the pre - install stage , the TAMDP runtime environment for N application clients and
human user interacts with the introspection chat bot as the application server in the TAMDP server type of rendi
disclosed below . 55 tion . The TAMDP publishes a representational state transfer
Human User » What is the name of this App ? (REST) -like or a simple object access protocol (SOAP)
Introspection ChatBot » Field Service App application programming interface (API) based on the val
Human User » Who owns the App ? ues of the attributes of the machine affinity model . The
Introspection ChatBot » app4servicecenter.com TAMDP duplicates or refactors the generated application
Human User » What are the options available in this App ? 60 binary for all possible topologies of client and server ren
Introspection ChatBot » This app allows you to submit a ditions .

device for repair , see the past history , call the call center The tri - affinity model driven platform (TAMDP) runtime
of the repair shop , and track your service request . subsystem comprises a server runtime , a runtime notification

Human User » Does this app collect any privately identi- server , a runtime synchronization server , a runtime identity
fiable information ? 65 and authorization server , and a runtime analytics server . The

Introspection ChatBot » This app collects your phone no . TAMDP runtime subsystem hosts the generated server - side
and your address for service delivery purposes . This application binary and hosts the TAMDP application store

45

a

10

15

US 11,249,734 B2
27 28

containing the generated client - side binary . The application runtime subsystem for sending these notifications to a sub
users download the application client - side binary on their ordinate or senior is disclosed below .
client devices . The server side surfaces the application (1) Collect notification payload .
programming interfaces (APIs) generated by the generated (2) Collect role - name and hierarchy direction (Subordi
server side . The runtime notification server , the runtime 5 nate / Senior) to which notification is to be sent .
synchronization server , and the runtime identity and autho (3) Enumerate all roles in application .
rization server perform actions as specified in the application (4) In case of “ Subordinate hierarchy direction " , deter
model , that is , the machine affinity model or the human mine all roles that are immediate subordinate to the

role - name . affinity model . The TAMDP runtime subsystem allows con
nection of the generated application to multiple data sources (5) In case of “ Senior hierarchy direction ” , determine all

roles that are immediate senior to the role - name . using different connectors .
The runtime notification server of the tri - affinity model (6) Enumerate all application users belonging to deter

mined roles . driven platform (TAMDP) runtime subsystem generates (7) Send notification for each user . notifications related to the generated application in runtime The runtime synchronization server generates synchroni per application programming interface (API) basis across zations related to the application in runtime on a per appli
the N clients using a send - to - role hierarchy or a send - to - role cation programming interface (API) basis across the N
hierarchy based on user content , notification frequency , and clients type rendition of the application based on synchro
notification method specified in the application model . The nization frequency specified in the application model . A
attributes in the machine affinity model allows generation of 20 process statement in the Alfa domain specific language
notifications per user based on an option for opt - in and specifies an API . In an embodiment , the process statement
opt - out of the notifications on the clients . A process state- specifies an optional clause that provides synchronization
ment in the Alfa domain specific language specifies an related details comprising , for example , synchronization
application programming interface (API) . In an embodi- frequency in the Alfa domain specific language . The tri
ment , an optional clause that provides notification related 25 affinity model driven platform (TAMDP) uses the synchro
details comprising , for example , " per user content ” , notifi- nization related details to generate a code that performs
cation frequency by way of a cron expression , one of client - side specific synchronization on a per API basis across
multiple notification methods , etc. , in the Alfa domain multiple clients for an end user of the application .
specific language is specified in the process statement . The The runtime identity and authorization server of the
notification methods comprise , for example , electronic mail 30 tri - affinity model driven platform (TAMDP) runtime sub
(email) , a short message service (SMS) , a device push system authenticates and authorizes users before using the
notification , a voice call , a third party messaging application application functionality using role based access control and
such as WhatsApp® . using a first page login or an inflow login . The runtime
The tri - affinity model driven platform (TAMDP) uses the identity and authorization server provide role based access

notifications related details to generate a code that performs 35 to content of the application . In an embodiment , the runtime
a notification dispatch on a per API basis across multiple identity and authorization server allows guest access to some
client devices used by an end user of the application . In an parts of the application . For example , the runtime identity
embodiment , the Alfa domain specific language comprises and authorization server provides access to a partial set of
process statements having a notification clause with any screens and functionality of the application based on user
combination of the notification methods disclosed above . In 40 roles . The attributes in the application model allow role
another embodiment , the Alfa domain specific language based access control using filtering , masking , and routing .
comprises process statements having a notification clause The runtime identity and authorization server performs role
with a sub - clause specifying whether the end user can opt - in based access control using a “ filter for ” clause for a user
or opt - out of the notification . In another embodiment , the element and process . In an embodiment , the Alfa domain
Alfa domain specific language comprises process statements 45 specific language employs a “ filter for role (< rolenamel > ,
having a notification clause with a sub - clause specifying < rolename2 > , ...) " clause for a role based access control
whether a notification payload is to be generated once for all on user interface (UI) elements , application programming
end users who would be the recipients of the notification , or interfaces (APIs) , etc. The role - based access control feature
whether a notification payload is to be generated per user so is available to applications that have login enabled . Use of
that the notification payload may vary due to use of the end 50 the “ filter for role (< rolenamel > , < rolename2 > ,) " clause
user context in the content generation . is a blacklist method and results in the generated model

The runtime notification server sends notifications per containing filter specifications on a corresponding element
application programming interface (API) basis across the N in both a blacklist method and a whitelist method . The
clients using the send - to - role . An algorithm executed by at TAMDP runtime subsystem hides the “ filtered ” element so
least one processor of runtime notification server of the 55 that the “ filtered ” element is not accessible or visible to end
tri - affinity model driven platform (TAMDP) runtime sub- users belonging to the filtered roles .
system for sending these notifications is disclosed below . The runtime identity and authorization server performs

(1) Collect notification payload . role - based access control using a “ mask for ” clause for user
(2) Collect role - name to which notification is to be sent . elements , a process , and a data attribute . In an embodiment ,
(3) Enumerate all application users belonging to role- 60 the Alfa domain specific language employs a “ mask for role
name . (< rolenamel > , < rolename2 > , ...) " clause for a role based

(4) Send notification for each user . access control on user interface elements , application pro
The runtime notification server sends notifications per gramming interfaces , data attributes , etc. This role based

application programming interface (API) basis across the N access control feature is available to applications that have
clients using the send - to - role hierarchy . An algorithm 65 login enabled . Use of the “ mask for role (< rolenamel > ,
executed by at least one processor of the runtime notification < rolename2 > , ...) ” clause is a blacklist method and results
server of the tri - affinity model driven platform (TAMDP) in the generated model containing mask specifications on the

a

a

server .

server .

US 11,249,734 B2
29 30

corresponding element in both the blacklist method and the (API) invocation count , number of visits to the different
whitelist method . The tri - affinity model driven platform pages of the cross - platform application , a bounce rate of the
(TAMDP) runtime subsystem masks the value in the cross - platform application , and an exit rate of the cross
" masked ” element so that the value is crossed out for end platform application . The runtime analyzer and visualizer
users belonging to the masked roles . An algorithm for 5 derives a usage heat map of the cross - platform application
programming the role based access control into the TAMDP and measures application usage , for example , by the authen
using the Alfa domain specific language is disclosed below : ticated and authorized users , role , time of day , and geo

(1) Enumerate the roles in the application . graphical region using the data logged by the runtime logger .
(2) Enumerate application elements that carry access An algorithm defined in the runtime analyzer and visu

control information in a whitelist method or a blacklist 10 alizer and executed by at least one processor of the tri
method . affinity model driven platform (TAMDP) runtime subsystem

(3) Generate a conditional code to evaluate the access for visualizing a count of viewing of a particular page in the
control at runtime to perform determination based on a application is disclosed below .
user profile . The determination may result in one of (1) Enumerate all pages in application .
“ filter ” or “ mask " actions on the corresponding appli- 15 (2) For each page , generate counting logic that will
cation element . increment each time a page is viewed by an end user .

The tri - affinity model driven platform (TAMDP) gener- (3) At runtime , receive a page view count in storage on
ates a code to enable a first page login for an application . In
an embodiment , the Alfa domain specific language employs (4) Present a page view count on demand and for a
a “ login = firstPage ” clause in an “ app ” statement . This clause 20 particular page (if any) .
enables the downstream generation of a login page that is An algorithm defined in the runtime analyzer and visu
presented to the end user when the application is launched . alizer and executed by at least one processor of the tri
The application can be accessed only with valid authenti- affinity model driven platform (TAMDP) runtime subsystem
cation credentials . In another embodiment , the Alfa domain for visualizing a heat map of visitations of a particular page
specific language employs a " login = inflow ” clause in the 25 in the application is disclosed below .
" app ” statement . This clause enables the downstream gen- (1) Enumerate all pages in application .
eration of a login page that is presented to the end user when (2) For each page , generate counting logic that will
the end user navigates to the login page from within the increment each time a page is viewed by an end user .
application . The end user can access and use those parts of (3) At runtime , receive a page view count in storage on
the application that are made available to " guest " role users 30
without valid authentication credentials . Post the end user (4) Present a heat map based on a page view count on
navigating to a login page and presenting valid authentica- demand and for a particular page (if any) .
tion credentials , the end user acquires a non - guest role and An algorithm defined in the runtime analyzer and visu
enjoys role based access control granted access within the alizer and executed by at least one processor of the tri
remainder of the application . 35 affinity model driven platform (TAMDP) runtime subsystem

The tri - affinity model driven platform (TAMDP) gener- for visualizing a bounce rate in the application is disclosed
ates a code for a named server runtime platform . The Alfa below .
domain specific language is a starting point for application (1) Enumerate all pages in the application .
realization . In the Alfa domain specific language , the server- (2) For each page , generate bounce rate logic that will
side of the application can be targeted to any of a choice of 40 increment each time the application is exited from a
server runtimes by use of a “ backend = < SERVER PLAT- page with the page being first in the session by an end
FORM NAME > " clause . If the server - side is left unspeci
fied , the generated application defaults to the tri - affinity (3) At runtime , receive a bounce rate in storage on server .
model driven platform (TAMDP) server runtime . The (4) Present a bounce rate on demand and for a particular
TAMDP generates a code for a named client runtime plat- 45 page (if any) .
form . In the Alfa domain specific language , the client - side of An algorithm defined in the runtime analyzer and visu
the application can be targeted to one or more of a choice of alizer and executed by at least one processor of the tri
client runtimes by use of the " frontend = < CLIENT PLAT- affinity model driven platform (TAMDP) runtime subsystem
FORM NAME > " clause . Absence of this clause results in for visualizing a page exit rate in the application is disclosed
generation of a server - only application . 50 below .
An application manager system of the tri - affinity model (1) Enumerate all pages in application .

driven platform (TAMDP) manages the running application (2) For each page , generate page exit rate logic that will
using TAMDP application management tools . Application increment each time the application is exited from a
management tasks comprise , for example , mapping of appl page with the page not being first in the session by an
cation roles to user directory roles , creation of end users , 55 end user .
updation of end users , deletion of end users , editing of (3) At runtime , receive a page exit rate in storage on
application configuration , etc. The TAMDP runtime subsys
tem comprises a runtime logger for recording an audit log (4) Present a page exit rate on demand and for particular
for actions performed by the administrator and end users of page (if any) .
the application . The runtime analyzer and visualizer of the 60 An algorithm defined in the runtime analyzer and visu
TAMDP runtime subsystem analyses the operation and alizer and executed by at least one processor of the tri
performance of the application , that is , the cross - platform affinity model driven platform (TAMDP) runtime subsystem
application using the analysis affinity model . The runtime for visualizing application usage by user is disclosed below .
analyzer and visualizer performs provenance querying using (1) Enumerate all pages in the application .
an application chat hot for analyzing the performance of the 65 (2) For each page , generate " clicked " , " viewed ” , and
application . The runtime logger logs various metrics com " opened ” counter logic that will increment each time an
prising , for example , an application programming interface end user performs a corresponding action .

user .

server .

15

?

a

US 11,249,734 B2
31 32

(3) At runtime , receive data in storage on server . ity models are then used to regenerate the application .
(4) Present application usage data on demand and for a Enhancements recommended and effected by the recom

particular page (if any) . mendation engine involve a rearranging navigation between
An algorithm defined in the runtime analyzer and visu- user interfaces (Uls) , a change of UI elements to another UI

alizer and executed by at least one processor of the tri- 5 element , etc.
affinity model driven platform (TAMDP) runtime subsystem The tri - affinity model driven platform (TAMDP) uses for visualizing application usage by role is disclosed below . model driven engineering methods to develop and run (1) Enumerate all pages in the application . cross - platform applications with improved application (2) For each page , generate “ clicked ” , “ viewed ” , and development time , effort , skill level , and costs . The TAMDP “ opened ” counter logic that will increment each time an 10 reduces skill level required to build the applications by the end user in a particular role performs corresponding

action . creation and implementation of the human affinity model
using the Alfa domain specific language which is an expres (3) At runtime , receive data in storage on server .

(4) Present location usage data on demand and for a sive , closer - to - natural - language modeling language . The
particular page (if any) . TAMDP incorporates best practices in coding by providing

An algorithm defined in the runtime analyzer and visu code generation using the machine affinity model . The
alizer and executed by at least one processor of the tri TAMDP churns out more applications with a small team by
affinity model driven platform (TAMDP) runtime subsystem lowering the skill requirements for building cross - platform
for visualizing application usage by time of day is disclosed applications , such that application developers need not be
below . 20 skilled in platform specific technologies to build applica

(1) Enumerate all pages in the application . tions on them . The TAMDP helps application developers
(2) For each page , generate “ clicked ” , “ viewed ” , and and business information technology (IT) cope with the

“ opened ” counter logic that will increment each time an increased demand for applications by enabling fast and low
end user performs a corresponding action retaining the cost development of applications . The TAMDP also
time stamp when the action was performed . 25 decreases maintenance due to rapid evolution in the under

(3) At runtime , receive data in storage on server . lying native platforms , by abstracting the application knowl
(4) Present application usage by time - of - day data on edge into the models of the TAMDP , out of the platform
demand and for a particular page (if any) . specific details , thus making the applications easy to migrate

An algorithm defined in the runtime analyzer and visu- on new releases of the underlying native platforms . The
alizer and executed by at least one processor of the tri- 30 TAMDP also has a substantially increased ability to analyze
affinity model driven platform (TAMDP) runtime subsystem and incorporate design and development feedback during
for visualizing application usage by geographical region is the design and development process , by the use of the
disclosed below . human affinity model and the analysis affinity odel , both

(1) Enumerate all pages in application . readable and understandable by business personnel and / or
(2) For each page , generate “ clicked ” , “ viewed ” , and 35 domain personnel . The TAMDP exhibits a substantially

" opened ” counter logic that will increment each time an increased ability to analyze the application during runtime ,
end user performs a corresponding action retaining by the use of the analysis affinity model .
geo - location coordinates when the action was per- FIG . 2 exemplarily illustrates a schematic diagram of the
formed . tri - affinity model driven platform (TAMDP) 202 comprising

(3) At runtime , receive data in storage on server . 40 the TAMDP development subsystem 203 and the TAMDP
(4) Present application usage by geographical region data runtime subsystem 204. The TAMDP development subsys
on demand and for a particular page (if any) . tem 203 comprises the compiler , the model - to - model

An algorithm defined in the runtime analyzer and visu- (M2M) transformer , the model - to - text (M2T) transformer ,
alizer and executed by at least one processor of the tri- and the development time analyzer and visualizer . The
affinity model driven platform (TAMDP) runtime subsystem 45 TAMDP runtime subsystem 204 comprises the runtime
for visualizing performance of an application is disclose analyser and visualizer and the runtime logger for deploying
below . and running the cross - platform application . As exemplarily

(1) Enumerate all pages in application . illustrated in FIG . 2 , an application specification 201 com
(2) For each page , generate “ time taken to load ” , “ time pliant to the predefined canonical meta - models is provided

taken to first view render ” , “ time taken to show entire 50 as an input to the TAMDP development subsystem 203 for
page ” logic that will record each time an end user developing the cross - platform application and to the
navigates to a page . TAMDP runtime subsystem 204 for executing the cross

(3) At runtime , receive data in storage on server . platform application .
(4) Present application performance data on demand and FIG . 3 exemplarily illustrates a schematic diagram of a

for a particular page (if any) . 55 predefined metamodel 301 used by the tri - affinity model
The runtime analyzer and visualizer acts on the collected driven platform (TAMDP) 202 exemplarily illustrated in

application usage data and the analysis affinity model to FIG . 2 , for specifying an application . Descriptive attributes
provide various types of analyses . The machine learning of the eight meta - models 301 of the TAMDP 202 compris
based recommendation engine of the tri - affinity model ing , for example , the application (app) meta - model , the
driven platform (TAMDP) runtime subsystem acts on the 60 namespace meta - model , the configuration (config) meta
collected application usage data and suggests enhancements model , the locale meta - model , the activity metamodel , the
on the application using a machine learning algorithm . The service meta - model , the data meta - model , and the user
TAMDP enhances the application using the analysis affinity interface metamodel are input to the TAMDP 202 to gen
model to generate machine learning based recommendations erate the human affinity model or the machine affinity model
to regenerate the application model , that is , either the human 65 for different applications . The app meta - model provides
affinity model or the machine affinity model . In an embodi- descriptive attributes to hold information that pertains to the
ment , such revised human affinity models or machine affin- application as a whole . The information pertains to admin

2

US 11,249,734 B2
33 34

istrative and governance aspects of the application . tion administrator or any user during the life of the operation
Examples of the descriptive attributes of an app meta - model of the application . Examples of descriptive attributes of the
are disclosed below . config meta - model are disclosed below .

5

15

owner = " com.app4servicecenter ” configurationParameter name = " allow_enduser_opt_in ”
description = " App for running a service center ” description = " Configuration item allow_enduser_opt_in "
login = " Yes " type = " String "

required = " Yes " value = " No "
configurationParameter name = " database_name ” description = " Name of

If the login attribute set to “ Yes ” , users require credentials 10 the database ” type = " String " required = “ Yes ” value = " apps_app4sc ”
to access any interface , that is , a human interface or a
machine interface of the application . If the login attribute is The configurationParameter attribute holds a name ,
set to “ No ” , then any user , that is , a guest is allowed access description , and other information about a configuration
to any interface , that is , a human interface or a machine item .
interface of the application . The locale meta - model provides descriptive attributes to deviceCapabilities Detection = " Yes " hold information about parameters that are dependent on

If the deviceCapabilities Detection attribute is set to geographic region aspects , for example , language , colour ,
“ Yes ” , the client sides of the application provide data about currency , images , etc. Examples of descriptive attributes of
the technical capabilities of the device hosting the client the locale meta - model are disclosed below .
sides , for example , “ screen resolution ” , “ screen density ” ,
" camera availability " , and " GPS availability " .

localizationSet languageCode2Letter = " en " default = " Yes "
localizationSet languageCode2Letter = " fr "

publications clientType = “ Android ”
publications clientType = " iOS ”
publications clientType = “ SMS ” The localizationSet attribute holds the locale identifier .
publications clientType = " IVRS ”

>

20

25

35

45

entries name = " text_signin " value = " Sign in ” The publications clientType attribute enumerates the tar entries name = " text_signin " value = " Se connecter ” get platforms for which client sides and client - side specific 30
server sides of the application are to be available .

The entries attribute holds a name and a value entry for a
locale .

roles name = " FrontOffice Executive ” The activity meta - model provides descriptive attributes to
roles name = " Admin ” hold information about access control based on role based

access control (RBAC) and / or attribute - based access control
The roles name attribute enumerates the roles that human (ABAC) for entry points . An activity is an ordered set of

users have within the application . The roles allow users steps , for example , screens and application programming
access to certain parts of the application . interfaces (APIs) , that are performed to fulfill or partially

The namespace meta - model provides descriptive attri- 40 fulfill a particular business process . The “ entry point ” to an
butes to hold information about identification , for example , activity is the first step , for example , a screen or an API in
identifiers , partial identifiers , version , etc. , of constituent the activity . Examples of descriptive attributes of the activity
elements within application models and / or contents of appli metamodel are disclosed below .
cation models . Examples of descriptive attributes of the
namespace metamodel are disclosed below . Activity name = " ListAllBrands ” applicationNamespaceBase = www.app4servicecenter.com roleName = Customer A set of application models are specific to a version . An roleName = FrontOffice Executive
application may have multiple versions . The application
NamespaceBase attribute holds an identifier for the set of The roleName attribute holds role names that have been application model sets across multiple versions . Each and 50
every constituent element is within the application models is granted or denied access to a constituent element within
uniquely identifiable . The uniform resource identifier (URI) application models . An example of an activity comprising
is used as an identifier for each constituent element . The multiple steps , for example , screen steps or application
complete identifier for any such constituent element is programming interface (API) steps is disclosed below .
formed by concatenation of multiple segments or multiple 55
partial identifiers , where applicationNamespaceBase is a Activity name = " LandingPage " prefix common to all , which is followed by an application roleName = Customer
namespace version and by a model type . Each model occu roleName = FrontOffice Executive
pies its own namespace . The element name is the suffix . Activity name = " ListAllBrandsAPI ”

roleName = Customer namespaceVersion major = “ 1 ” minor = “ 0 ” increment = “ 0 ” 60 roleName = Front Office Executive The namespaceVersion major attribute holds the version Activity name = " ListAllBrandsModels ”
number of the application (namespace) . roleName = Customer

The config meta - model provides descriptive attributes to roleName = FrontOffice Executive

hold information about parameters that have characteristics Activity name = " ListAllBrandsModelProblems ”
roleName = Customer that need to be set according to the external environment , 65 roleName = Front Office Executive

characteristics that are used by the application during opera Activity name = " SubmitRepairOrderFormAPI ”
tion , characteristics that must be changeable by an applica

US 11,249,734 B2
35 36

-continued -continued
roleName = Customer
roleName = Front Office Executive

wrapContentWidth = " true " wrapContentHeight = " true ” flex = " true "
widgets type = “ ui : Picker " name = “ P_Category ”

5

The above activities are performed in a given order . The above sample code is an example of a user interface
The service meta - model provides descriptive attributes to (UI) element layout based on containment , wherein UI

hold information about all machine interfaces provided by elements that are nested in other UI elements are referred to
the server side of the application for integrating the client as “ child ” elements of the " parent " elements . Such organi
side of the application as well as other external systems . 10 zation of the UI elements enables layouting of a display area
Herein , “ machine ” specifically refers to one or more non- by dividing the display area into a substantially smaller
living users , that is , one or more non - human users of the nested rectangular area . In addition to this , properties may application . Examples of descriptive attributes of the service be set per UI element to specify the look and positioning of meta - model are disclosed below . the UI elements . 15

20

25

30

40

service name = " Brands " panel parameter name = " varCategory Key ” description = “ Path parameter metadata name = " attributes " ' varCategory Key ? " typeOrEntity Name = " String " metadataAttribute name = " android_hide_soft_navigation_bar " value = " true " result idempotent = “ Yes ” safe = “ Yes ” name = " Brands Result ”
entity Name = " [BrandsPickerObject] ”
execution Info type = " REST " name = " Brands Api ”
path = " / category / { varCategory Key } / brands / picker " The “ panel ” attribute indicates start of a specification of
producesMediaTypes application / json a user interface (UI) that occupies the entire display area .
logic name = " Brands ” The " metadata ” attribute holds information about non - visual

and non - behavioral aspects of the UI . The “ metadataAttrib
The above examples specify a sample machine interface ute ” attribute holds a single metadata item . In this example ,

or an application programming interface (API) . The logic the “ metadataAttribute ” attribute holds guidance specific to
name attribute holds an identifier of the corresponding a target platform , for example , Android for a downstream
business logic provided by an application developer . UI , that is , the target application client platform code gen

The data meta - model provides descriptive attributes to eration .
hold information about data structures that provide a trans- template ident = " FragmentCreateInvoiceForm ”
mission format specification for data , that is , schema , struc- The " template " attribute indicates start of the specification
ture , and data type information for data in - flight or data of a user interface (UI) that occupies a partial display area .
at - rest , that flows across application clients and the appli In this example , the template is named “ FragmentCreateIn
cation server or across the application server and an external 35 voiceForm ” .
system . Examples of descriptive attributes of the data meta
model are disclosed below .

widget type = “ ui : Button " name = “ B_Repair ” wrapContentWidth = " true "
wrapContentHeight = " true ” textLocaleRef = label_repair "

data Model name = " fixkart_website ” supportXMLSerialization = “ Yes ” backgroundColor > 255 < / backgroundColor
persistent = “ Yes ” on Server = " Yes " onClient = “ Yes ” materialization Attributes > role (FrontOffice Executive
A dataModel can contain one or more entities . < / materialization Attributes

entity name = " Category Master " nameInPersistentStore = " mst_ctg " materialization Attributes > filterrole (QA) < materialization Attributes
An entity can contain multiple " attribute ” -s . materialization Attributes = variant = 2

attribute name = " Category " nameInPersistentStore = “ ctg ”
dataType = " String "

length = " 50 " The " widget " attribute indicates a user interface (UI)
attribute name = " CategoryDescription " element in the display area . This UI element specification is

ameInPersistentStore = " ctg_des ” target platform agnostic . The “ type of the “ widget ” is dataType = " String " length = " 250 " suggestive of a commonly known UI element . The " text
LocaleRef ” attribute holds a reference to an entry in the

The user interface (UI) meta - model provides descriptive 50 locale meta - model . The entry in the locale meta - model
attributes to hold information about all UI related aspects of provides the text that is to be shown in the UI element
the application , wherein " user " specifically refers to one or allowing for localization of the UI element .
more living users , that is , one or more human users of the In an embodiment , various properties about the widget ,
application . Uis comprising , for example , a text user inter- for example “ backgroundColor ” , “ margin ” , and “ text align
face (TUI) , a graphical user interface (GUI) , an interface of 55 ment ” are specified along with the “ widget ” . The “ materi
an interactive voice response system (IVRS) , a voice user alizationAttributes " attribute holds data that does not impact
interface (VUI) , a short message service (SMS) , and the visual rendition of the UI element . In this example ,
unstructured supplementary structured data (USSD) are “ role (FrontOfficeExecutive) ” specifies that access to this
specifiable using the UI meta - model . Examples of descrip UI element would be granted to the role “ FrontOffice
tive attributes of the UI meta - model are disclosed below . Executive ” and “ filterrole (QA) " specifies that access to

this UI element would be denied to the role “ QA ” .
User interface (UI) elements can have any number of

widgets type = " ui : ScrollView ” name = " SV_Content " renditions , with each rendition being a named variant . The matchParentWidth = " true "
matchParentHeight = " true " single Axis = " true " horizontal = " false " application developer can select a variant from the available
widgets type = " ui : Layout " name = " LAY_Initiate Repair_Repair ” 65 variants . In this example , the materialization attribute “ vari

gravity = " right " ant = 2 " specifies that all target application client platforms
must use the UI element rendition identified as variant 2. In

45

60

US 11.249,734 B2
37 38

an embodiment , the application developer can select a that support input of data by the end user . The “ submitRef "
variant per target application client platform . attribute holds the name of an entry in the service meta

model that maps to the application programming interface
(API) on the application server side that receives the form widget type = “ ui : Picker ” name = “ P_Brand ” wrapContentWidth = " true " 5 submission . wrapContentHeight = " true " model = " PickerDTO " dataRef = “ Brands ” In the above example , the “ drafts ” materialization attri
bute indicates that the data being entered in the form is to be

The “ model ” attribute holds the name of an entity in a data saved intermittently as a draft , that is , a yet to be completed
model which provides the structure for the data presented in form , in storage that is local to a host application client
the user interface (UI) element . The " dataRef ” attribute 10 device .
holds the name of an entry in the service meta - model . The
application programming interface (API) mapped to this
entry in the service metamodel is invoked to return the data widget type = “ ui : CaptureImage " name = I_Images ” matchParentWidth = true "
at runtime to populate the UI element . hintLocaleRef = " hint_Images ” boundTo = " ImageFileNames ”

a

"

15

widget type = “ ui : List ” name = “ LST1 " fragmentRef = " AssetTypeItem ”
model = " AssetTypeItemDTO ” dataRef = " ListAllAssetTypesService ”
materialization Attributes > adapt (visibility) = orientation = portrait ? true : false
< / materializationAttributes

Some user interface (UI) elements are used to surface host
device capabilities . In the above example , the UI element
“ CaptureImage ” is used , which integrates a host device
camera for taking a picture . The “ boundTo ” attribute names
the property within the containing form's model . Data
binding between interactive UI elements and the model is
established using the “ boundTo ” attribute .

20

The “ fragmentRef " attribute holds the name of a template
which contains the layout to be used for displaying one
element of the many that are shown within the user interface
(UI) element . In this example , the materialization attribute
" adaptívisibility) = orientation = -portrait ? true : false ” speci
fies that the UI element must be visible in a portrait
orientation only .

25
widget type = " ui : Map " name = " M1 " matchParentWidth = " true "
matchParentHeight = " true " model = " MapInfoDTO ”
dataRef = " CustornerLocationsMapService ”

30
widget type = “ ui : Springboard ” name = " SB1 ”
widget type = “ ui : MenuOption " name = " AddModelMaster ”
labelLocale Ref = " label_addmodelmaster ” iconRef = " icon_addmodelmaster ”
widget type = “ ui : MenuOption " name = " ViewModelMaster ”
labelLocaleRef = label_viewmodelmaster ”
iconRef = " iconview_modelmaster ”

Some user interface (UI) elements are used to integrate
information services provided by third party providers . In
this example , the “ Map ” UI element is used which integrates
with third party web mapping service providers .

35 widgets type = " ui : Label ” name = " L_notification Title ” textStyleBold = " true "
bound To = " notificationTitle "
badge = 10 % off | topleft triangle 0xFF0000AA This is an example of a complex user interface (UI)

element named “ Springboard ” . Complex UI elements are
composed of other UI elements with inbuilt look and posi
tioning of contained UI elements . 40 Badging refers to overlaying some content at a chosen

position on a user interface (UI) element . In this example ,
the " badge ” attribute holds data specifying the static content
of the badge as well as its position on the UI element , for
example , the Label “ L_notificationTitle ” and color . In an
embodiment , the value for the “ badge ” attribute is dynamic ,
that is , provided by a network service application program
ming interface (API) .

Behaviors that are to be carried out upon occurrence of an
event on particular user interface (UI) elements are disclosed
below .

widget type = “ ui : DataDeterminedMultiLayout " name = " ML_AllCustomers ”
matchParent Width = " true " matchParentHeight = " true "
determinantAttribute = " zebra ” model = " CustomerDTO "
dataRef = " ListAllCustomersService "
materialization Attributes > filtered < / materialization Attributes
determinantTofragmentRef > even : CustomersItemEven
< / determinantTofragmentRef
determinantTofragmentRef = odd : CustomersItemOdd

45

50

a
In the above example , a complex user interface (UI)

element is shown in which a contained layout is determined
based on data made available at runtime . In this example , a
list appearance is enhanced with different zebra striped
layouting for the odd and even rows of list items .

condition type = " ui : Event " eventType = " Select ” partName = “ LST1 "
eventChild type = " ui : Variable ” name = " varAssetType " dataType = " String "
variableChild type = " ui : Variable Property ” name = " assetType "
containerType = " List ” container = “ LST1 ” containee Name = " selected ” 55

"

a

In the above example , " Select ” that results in a selection widget type = " ui : Form " name = " FRM1_CreateInvoice ”
matchParent Width = " true " of the user interface (UI) element itself or a selection of an
matchParentHeight = " true " titleLocaleRef = " titleCreateInvoice " item within a UI element , is the event . The occurrence of the
fragmentRef = " FragmentCreateInvoiceForm ” model = " InvoiceDTO " 60 event on the List UI element named “ LST1 " acts as a trigger
submitRef = " SubmitInvoiceService " for the associated behaviour to be carried out . The associated
materialization Attributes = drafts behaviour in this example is the creation or assignment of a

variable named “ varAssetType ” . The value to be assigned is
Disclosed above is an example of the “ Form ” user inter- taken from the selected item that is selected by the end user

face (UI) element which is used for data collection . A 65 by tapping or clicking on the item of the List UI element
“ Form ” contains UI elements , for example , edit boxes , named “ LST1 ” . This value is extracted from the “ assetType ”
check boxes , radio buttons , drop down menus or pickers , property of the model associated with the List UI element .

a

US 11,249,734 B2
39 40

methodId “ signin ” for authentication of an end user using a
eventChild type = " Call ” componentId = “ Segue ” methodId = “ Present ” username and a password entered by the end user . mixed ContentText = EditAssetType AccessoryMaster FIG . 4 exemplarily illustrates a schematic diagram show mixedContent Text = varAssetType
mixedContentText = varAssetTypeKey ing derivation of non - canonical meta - models for analysis

5 affinity 401 for analyzing an application , and non - canonical
meta - models for human affinity 401a for authoring an

In the above section subsequent to the creation or assign application , from predefined canonical meta - models 301
ment of a variable behaviour , the next behaviour carried out used by the tri - affinity model driven platform (TAMDP) 202
is navigation or segue by a method of presenting a user exemplarily illustrated in FIG . 2. The analysis meta - models
interface (UI) named “ EditAssetTypeAccessoryMaster ” and 10 401 are one - time hand authored to correspond to the pre
additionally passing the value of a variable named “ varAs- defined canonical meta - models 301. The human affinity
setTypeKey ” to the next UI . model has a transformation from and to a machine affinity

model . A human affinity model has an optional translation to
another human affinity model . A domain specific modeling

condition type = “ ui : Event " type = " Select ” partName = " Submit " 15 language , such as Alfa , allows human application developers eventChild type = Call ” componentId = “ Form ” methodId = " post " to author the human affinity model for the application . mixedContentText = FRM1_CreateInvoice FIG . 5 exemplarily illustrates a schematic diagram show
ing interactions between the predefined canonical meta

In the above example , the occurrence of the “ Select ” models 301 , the analysis meta - models 401 , the human
event on the button user interface (UI) element named 20 affinity meta model 401a , and tri - affinity models 501 , 502 ,
“ Submit " acts as a trigger for the associated behaviour to be and 503 in realizing an application using the tri - affinity
carried out . The associated behaviour in this example is the model driven platform (TAMDP) 202 exemplarily illus
submission of a form indicated by componentId “ Form " and trated in FIG . 2. The input values of the descriptive attributes
methodId " post " named “ FRM1_CreateInvoice ” . One or of the predefined canonical meta - models 301 of the TAMDP
more values to be submitted are taken from the UI elements 25 202 are received in a human affinity mode or a machine
related to data capture that are defined in the associated affinity mode . An instance of an application created in the
fragment referred in the “ fragment ref " clause of the UI human affinity mode realizes a human affinity model 501 of
element . The values to be submitted are packaged as per the the application and an instance of an application created in
data structure dictated by the model associated with the form the machine affinity mode realizes a machine affinity model
mentioned in the “ model ” clause of the form UI element . 30 502 of the application . As disclosed in the detailed descrip
The submission is performed to the application program- tion of FIGS . 1A - 1B , for every human affinity model 501
ming interface (API) over a network mentioned in the and machine affinity model 502 , an analysis affinity model
" submit " clause of the form UI element . 503 is created via , a transformation process that is compliant

with an analysis meta - model 401. The machine affinity
35 model 502 is compliant with the predefined canonical meta

condition type = " ui : Event " type = " Select ” partName = " Submit " models 301. The human affinity model of an application is
eventChild type = " Call ” componentId = “ Bluetooth ” methodId = “ Print ”
mixedContent Text = PrintInvoiceBySoService optionally translated to another human affinity model of the
mixedContent Text = " template_invoice.txt " same application using a translation process , such as trans

lation of a human affinity model authored by a developer
40 using a domain specific language , such as Alfa , in a specific In the above example , the occurrence of the “ Select ” vernacular spoken language , such as English , to another event on the button user interface (UI) element named human affinity model of the same application using a domain " Submit ” acts as a trigger for the associated behavior to be specific language , such as Alfa , in another vernacular spoken carried out . The associated behavior in the above example is language , such as German , using a translation process . printing over a Bluetooth® communication protocol of FIG . 6 exemplarily illustrates a schematic diagram show Bluetooth Sig , Inc. , on a paired Bluetooth® printing device . ing interactions between developers 601a and 601b , admin The content to be printed is provided as a combination of a istrators or application managers 602 , and end users 603 , template file named “ template_invoice.txt ” and an applica and the tri - affinity models 501 , 502 , and 503 during devel tion programming interface (API) named “ Printin opment and runtime of an application . A developer 601a or voiceBySoService ” . The API responds with data that is 50 601b hand authors the human affinity model 501 of an selectively substituted into the template before printing . application and analyses the application during development

time using its analysis affinity model 503. The end user 603
introspects the application using the analysis affinity model condition type = " ui : Event ” type = " Select ” partName = " Submit "

eventChild type = " Variable ” name = “ u ” type = " String " 503. An administrator or an application manager 602 analy
variableChild type = " ui : Variable Property ” name = " username ” 55 ses the operations of the application during runtime using
containerType = " model ” the analysis affinity model 503 and the data recorded during eventChild type = " Variable ” name = " p " type = " String " operations . The end users 603 do not interact with the variableChild type = “ ui : Variable Property " name = " password "
containerType = model ” machine affinity model 502. The machine affinity model 502
eventChild type = " Call ” componentId = “ Session ” methodId = " signin ” is used to generate the source code and the binary code .
mixedContentText = u FIG . 7 exemplarily illustrates a schematic diagram show mixedContentText = p ing a singular instance of the predefined canonical meta

models 301 and models 701 or 702 per application in the
In the above example , the occurrence of the “ Select ” tri - affinity model driven platform (TAMDP) 202 exemplar

event on the button user interface (UI) element named ily illustrated in FIG . 2. With a set of input values for the
“ Submit " acts as a trigger for the associated behaviour to be 65 descriptive attributes of the predefined canonical meta
carried out . The associated behaviour in the above example models 301 , a developer of the application using the
is the signing in signified by the componentId “ Session ” and TAMDP 202 realizes an application model 701 specific to an

a

45
)

9

60

5

a

US 11,249,734 B2
41 42

application (app) , for example , a ToDo app . Similarly , with erator 1003 in the TAMDP development subsystem 203
another set of input values for the descriptive attributes of transforms the machine affinity model 502 to generate a
the predefined canonical meta - models 301 , the developer platform specific source code for client side 1008 and server
realizes an application model 702 specific to another appli- side 1009 renditions of different types . Using the build
cation , for example , a CRM app . tooling 1004 of the target platforms of client side 1010 and

FIG . 8 exemplarily illustrates a schematic diagram of an server side 1011 renditions , the TAMDP 202 generates application realized using a tri - affinity model driven method platform specific binaries for the target client only rendition , and deployed in the tri - affinity model driven platform the target client and the TAMDP server rendition , N target (TAMDP) 202 exemplarily illustrated in FIG . 2. The sepa clients and the TAMDP server rendition , the target client and ration between a frontend of the application and a backend 10
of the application is exemplarily illustrated in FIG . 8. The a third party server rendition , and the N target clients and the
application frontend , that is , a client - side rendition of the third party server rendition . The development time analyzer
application , comprises a user interface . The business logic is and visualizer 1005 comprises a model based analyzer 1012 ,
implemented in the application backend , that is , in the server a data based analyser 1013 , and a machine learning based
side rendition of the application . The application frontend 15 analyzer 1014 for performing various analyses based on
runs on a targeted client platform . The application backend model , data , and machine learning respectively , to provide
runs on a targeted server platform . The application data insight into usage of the application and enhance the appli
resides in external data stores comprising , for example , a cation models based on the application usage data .
relational database management system (RDBMS) , a FIG . 11 exemplarily illustrates a schematic diagram of the
NoSQL data store , a blockchain , etc. In an embodiment , the 20 development time analyzer and visualizer 1005 and the
application backend connects to external system of record runtime analyzer and visualizer 1101 in the tri - affinity model
(Sons) , external web services , etc. Connectors are used to driven platform (TAMDP) 202 exemplarily illustrated in
integrate with external entities . FIG . 2 , for performing analyses of different types on the

FIGS . 9A - 9C exemplarily illustrate schematic diagrams realized application during development time and runtime
showing applications and topologies of different types that 25 respectively . During development time , the model based
can be realized using the tri - affinity model driven method as analyzer 1012 uses the analysis affinity model 503 to ana
disclosed in the detailed description of FIGS . 1A - 1B and lyze , for example , screen flows , the number of steps to reach
FIG . 8 . a screen , different screen elements presented for an end user
FIG . 10 exemplarily illustrates a schematic diagram of the role , etc. , in the application , and provides the analyses as a

tri - affinity model driven platform (TAMDP) development 30 console output , hypertext markup language (HTML) pages ,
subsystem 203 of the TAMDP 202 exemplarily illustrated in records in an audit log , etc. During runtime , the data based
FIG . 2. The TAMDP development subsystem 203 compiles analyzer 1013 uses the application usage data and the
the human affinity model 501 into the machine affinity analysis affinity model 503 to analyze , for example , exit
model 502 using the compiler 1001 , or in an embodiment , times on pages , inbox usage , etc. , in the application , and
directly generates the machine affinity model 502 of the 35 provides the analyses , for example , as a client based dash
application on receiving inputs of values , for example , via board , records in an audit log , etc. During runtime , the
chat bots , a what - you - see - is - what - you - get (WYSIWYG) machine learning based analyzer 1014 uses the application
editor , etc. The result of authoring an application is a human usage data and the analysis affinity model 503 to analyze , for
affinity model 501. An embodiment of a human affinity example , frequent navigation performed , types of optimiza
model 501 is a source program written using a domain 40 tions for devices , etc. , in the application , and provides the
specific language , such as Alfa . A human affinity model of analyses , for example , as recommended modifications on the
an application specifies an application comprehensively human affinity model 501 and the machine affinity model
covering , for example , namespace , application , process , user 502 , suggested different navigation paths , etc.
interface , data , configuration , and locale aspects . The com- FIG . 12 exemplarily illustrates a schematic diagram of the
piler 1001 compiles an Alfa program source into the corre- 45 model - to - source code generator 1003 in the tri - affinity
sponding model instances for each of these aspects . The model driven platform (TAMDP) development subsystem
translator 1015 provides an optional translation service to 203 exemplarily illustrated in FIG . 2 , for generating a source
translate a human affinity model 501 of an application to code for an application of different rendering types on
another human affinity model 501 of the same application . supported client and server platforms by performing model
In an embodiment , a human affinity model of an application 50 to - text transformations . The model - to - source code generator
501 authored in a vernacular dialect , such as English , is 1003 performs model - to - text transformations with the
translated using the translator 1015 into another human machine affinity model 502 as input to generate a source
affinity model 501 of the same application , in another code for a target client only rendition , a target client and the
vernacular dialect , such as Hindi . TAMDP server rendition , N target clients and the TAMDP

The transformers 1002 of the tri - affinity model driven 55 server rendition , a target client and a third party server
platform (TAMDP) development subsystem 203 comprise rendition , and N target clients and a third party server
the model - to - model transformer 1006 and the model - to - text rendition .
transformer 1007. The model - to - model transformer 1006 FIG . 13 exemplarily illustrates a schematic diagram of the
transforms the machine affinity model 502 to the analysis build tooling 1004 in the tri - affinity based model develop
affinity model 503. The model - to - text transformer 1007 60 ment platform (TAMDP) development subsystem 203
transforms the machine affinity model 502 to the human exemplarily illustrated in FIG . 2 , for generating an execut
affinity model 501. The machine affinity model 502 supports able binary for an application of different rendering types on
transformations , for example , model - to - model transforma- supported client and server platforms . The TAMDP devel
tion , model - to - text transformation , any - to - model transfor- opment subsystem 203 uses the build tooling 1004 for
mation , etc. The machine affinity model transformations are 65 transforming the machine affinity model 502 exemplarily
achieved by software methods implemented using model illustrated in FIG . 5 , to a target client binary and a target
driven engineering concepts . The model - to - source code gen- server binary for different rendering types , for example , the

US 11,249,734 B2
43 44

target client and the TAMDP server rendition , N target and run in the tri - affinity model driven platform (TAMDP)
clients and the TAMDP server rendition , and only the 202 exemplarily illustrated in FIG . 2. The introspection is
TAMDP server rendition . performed using the analysis affinity model 503 exemplarily

FIG . 14 exemplarily illustrates a schematic diagram illustrated in FIG . 5 , to provide answer to questions asked by
showing steps performed by the tri - affinity model driven 5 an end user 603 exemplarily illustrated in FIG . 6 , at a
platform (TAMDP) development subsystem 203 exemplar- preinstall stage . An introspection chat bot uses the analysis
ily illustrated in FIG . 2 , for prototyping an application affinity model 503 and the device data to provide answers to
during development time . A developer 601a uses the gen- the questions asked by the end user 603 at the post - install
erated application as a prototype with sample data , either as stage and the pre - login stage . The introspection chat hot uses
a set of static values or as a set of randomly generated 10 the analysis affinity model 503 and the data stores to provide
values . The developer 601a shares the application with the answers to questions asked by the end user 603 at the
intended user audience or end users 603 to obtain validation post - install stage and the post - login stage .
and feedback before deploying the application into produc- FIG . 19 exemplarily illustrates a schematic diagram
tion . After receiving satisfactory acceptance , the developer showing persistent stores of different types supported by the
601a makes the application available for use on the TAMDP 15 runtime logger of the tri - affinity model driven platform
application store . (TAMDP) runtime subsystem 204 exemplarily illustrated in
FIG . 15 exemplarily illustrates a schematic diagram of the FIG . 2 , for managing an application . The TAMDP runtime

tri - affinity model driven platform (TAMDP) runtime sub- subsystem 204 records and collects usage data of selected
system 204 of the TAMDP 202 exemplarily illustrated in business activities and selected administration activities
FIG . 2. The TAMDP runtime subsystem 204 comprises the 20 based on the analysis affinity model 503 exemplarily illus
runtime analyzer and visualizer 1101 exemplarily illustrated trated in FIG . 5 , created upon the usage of a system
in FIG . 11 , the runtime logger , and runtime infrastructure for application 1601 or a non - system application 1602 by the
deploying and running the application . The runtime infra- end users 603 and administrators 602 exemplarily illustrated
structure comprises the server runtime , the runtime notifi- in FIG . 6. The TAMDP runtime subsystem 204 stores the
cation server , the runtime synchronization server , the run- 25 collected usage data , for example , in a relational database
time identity and authorization server , and the runtime management system (RDBMS) , a NoSQL data store , or a
analytics server . The TAMDP runtime subsystem 204 also blockchain based data store to provide differing qualities of
provides different connectors 1501 to connect the generated service .
application to multiple data sources . The multiple data FIG . 20 exemplarily illustrates a schematic diagram
sources comprise , for example , enterprise applications , web 30 showing analyses of different types performed by the run
applications , enterprise databases , Microsoft Excel of time analyzer and visualizer 1101 of the tri - affinity model
Microsoft Corporation , comma - separated values (csv) files , driven platform (TAMDP) runtime subsystem 204 exem
web services , application programming interfaces (APIs) , plarily illustrated in FIG . 2 and FIG . 11. The runtime
etc. The TAMDP runtime subsystem 204 further comprises analyzer and visualizer 1101 acts on the collected usage data
an application manager , an application publishing store , and 35 and provides various types of analyses . A recommendation
an application configurator . The TAMDP runtime subsystem engine of the TAMDP 202 exemplarily illustrated in FIG . 2 ,
204 hosts the generated server - side application binary to acts on the collected usage data and suggests enhancements
interact with client devices with , for example , user inter- on the application using a machine learning algorithm . The
faces , an interactive voice response system (IVRS) , internet enhancements are carried out on either the human affinity
of things (IoT) platforms , application programming inter- 40 model 501 or the machine affinity model 502 exemplarily
faces (APIs) , or representational state transfer (REST) / illustrated in FIG . 5 and follow the tri - affinity model driven
simple object access protocol (SOAP) systems . method of application generation .
FIG . 16 exemplarily illustrates a schematic diagram The foregoing examples have been provided merely for

showing system applications 1601 and non - system applica- explanation and are in no way to be construed as limiting of
tions 1602 deployed on an instance of the tri - affinity model 45 the method and the tri - affinity based model development
driven platform (TAMDP) runtime subsystem 204 of the platform (TAMDP) 202 disclosed herein . While the method
TAMDP 202 exemplarily illustrated in FIG . 2 , for execution and the TAMDP 202 have been described with reference to
in the TAMDP client or other server environment . The various embodiments , it is understood that the words , which
TAMDP runtime subsystem 204 comprises one or more have been used herein , are words of description and illus
non - system applications 1602 , and one or more system 50 tration , rather than words of limitation . Furthermore ,
applications 1601 for use by the non - system applications although the method and the TAMDP 202 have been
1602. The application manager or the end user 603 exem- described herein with reference to particular means , mate
plarily illustrated in FIG . 6 , uses the system applications rials , and embodiments , the method and the TAMDP 202 are
1601 to manage and run the non - system applications 1602 . not intended to be limited to the particulars disclosed herein ;
The end users 603 also use the non - system applications 55 rather , the method and the TAMDP 202 extend to all
1602 . functionally equivalent structures , methods and uses , such as
FIG . 17 exemplarily illustrates a schematic diagram are within the scope of the appended claims . While multiple

showing data stores and services of different types to which embodiments are disclosed , it will be understood by those
an application built using the tri - affinity model driven plat- skilled in the art , having the benefit of the teachings of this
form (TAMDP) 202 exemplarily illustrated in FIG . 2 , con- 60 specification , that the method and the TAMDP 202 disclosed
nects . One or more system application 1601 or non - system herein are capable of modifications and other embodiments
applications 1602 connect to one or more external entities , may be effected and changes may be made thereto , without
for example , data stores , web services , system - of - records departing from the scope and spirit of the method and the
(SoRs) , etc. , using the connectors 1501 . TAMDP 202 disclosed herein .
FIG . 18 exemplarily illustrates a schematic diagram 65 We claim :

showing steps of introspection performed at various stages 1. A tri - affinity model driven method implemented on a
of usage of an application when the application is executed tri - affinity model driven platform comprising :

15

US 11,249,734 B2
45 46

providing one or more processors , wherein executing 6. A tri - affinity system deployed on a tri - affinity model
three types of affinity models by said one or more driven platform comprising one or more processors , wherein
processors causes said three types of affinity models to execution of three types of affinity models by said one or
author , realize , and analyse a cross - platform applica- more processors causes said three types of affinity models to
tion using one or more human languages for authoring ; 5 author , realize , and analyse a cross - platform application

authoring of an application or parts of the application , in using one or more human languages for authoring , said
one or more representations of a user interface com tri - affinity system comprising :
prising a textual representation , a voice representation , a tri - affinity model driven platform configured to :
and a visual representation ; provide predefined canonical meta - models with

providing predefined canonical meta - models with 10 descriptive attributes for comprehensively describ
descriptive attributes for comprehensive description of ing the application ;

derive one or more non - canonical meta - models for the application ; human affinity from the predefined canonical meta deriving one or more non - canonical meta - models for models ; human affinity from the predefined canonical meta derive one or more non - canonical meta - models for
models ; analysis affinity from the predefined canonical meta

deriving the one or more non - canonical meta - models for models ;
analysis affinity from the predefined canonical meta- creating an instance of an application model for a
models ; specific application by setting values of descriptive

creating an instance of an application model for a specific attributes of the predefined canonical meta - models ;
application by setting values of descriptive attributes of 20 one of compile and transform the created instance of
the predefined canonical meta - models ; the application model to achieve the three affinity

one of compiling and transforming the created instance of models ;
the application model to achieve the three types of author one or more human affinity models using one or
affinity models ; more domain specific languages and translate

authoring one or more human affinity models using one or 25 between a plurality of the human affinity models ;
more domain specific languages and translating analyse and visualize one of the compiled or the
between a plurality of the human affinity models ; transformed created instance of the application

analysing and visualizing one of the compiled or the model under development using one or more analy
transformed created instance of the application model sis affinity models ; and
under development using one or more analysis affinity 30 test the analysed and visualized compiled or trans
models ; and formed created instance of the application model in

testing the analysed and the visualised compiled or trans a prototype mode with one or more of statically
formed created instance of the application model in a provided sample data and randomly generated
prototype mode with statically provided sample data or sample data .
randomly generated sample data . 7. The system of claim 6 , wherein the three types of

2. The method of claim 1 , further comprising : affinity models comprise the one or more human affinity
deriving the one or more human affinity models , one or models , one or more machine affinity models , and the one or
more machine affinity models , and the one or more more analysis affinity models .
analysis affinity models from the visual representation 8. The system of claim 6 , wherein a deployed application
of the user interface ; is introspected using an introspection bot from a user

analysing operation of the application using the one or interface of a tri - affinity model driven platform application
more analysis affinity models including provenance store in a tri - affinity model driven platform server type of

rendition . querying using an application chat bot ;
enhancing the analysed operation of the application using 9. The system of claim 6 , further configured to :

the one or more analysis affinity models and a machine 45 derive the one or more human affinity models , one or
learning based recommendation engine by regenerating more machine affinity models , and the one or more
the application model , effecting changes that rearrange analysis affinity models from the visual representation

of the user interface ; user interfaces and navigation between the user inter
faces ; and analyse operation of the application using the one or more

mutating the application using its conditional code to 50 analysis affinity models including provenance querying
regenerate user interface properties comprising one or using an application chat bot ;
more of height , visibility and width , based on environ enhance the analysed operation of the application using
mental factors comprising one or more of screen size , the one or more analysis affinity models and a machine
device form factor , time , date , and geo - position . learning based recommendation engine by regenerating

3. The method of claim 1 , wherein the comprehensive 55 the application model , effecting changes that rearrange
description of the application comprises describing all user interfaces and navigation between the user inter

faces ; and aspects , all rendering types , all platforms , and all features of
the application . mutate the application using its conditional code to regen

4. The method of claim 1 , wherein the three types of erate user interface properties comprising one or more
affinity models comprise the one or more human affinity 60 of height , visibility and width , based on environmental
models , one or more machine affinity models , and the one or factors comprising one or more of screen size , device
more analysis affinity models . form factor , time , date , and geo - position .

5. The method of claim 1 , wherein a deployed application 10. The system of claim 6 , wherein the comprehensive
is introspected using an introspection bot from a user description of the application comprises describing all
interface of a tri - affinity model driven platform application 65 aspects , all rendering types , all platforms , and all features of the application . store in a tri - affinity model driven platform server type of
rendition .

35

2

40
a

a

* *

